Mathbox for Rohan Ridenour < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnurndlem2 Structured version   Visualization version   GIF version

Theorem mnurndlem2 41356
 Description: Lemma for mnurnd 41357. Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnurndlem2.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnurndlem2.2 (𝜑𝑈𝑀)
mnurndlem2.3 (𝜑𝐴𝑈)
mnurndlem2.4 (𝜑𝐹:𝐴𝑈)
mnurndlem2.5 𝐴 ∈ V
Assertion
Ref Expression
mnurndlem2 (𝜑 → ran 𝐹𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙   𝑈,𝑟,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnurndlem2
Dummy variables 𝑣 𝑎 𝑏 𝑤 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnurndlem2.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnurndlem2.2 . 2 (𝜑𝑈𝑀)
3 mnurndlem2.3 . . . 4 (𝜑𝐴𝑈)
42adantr 485 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑈𝑀)
53adantr 485 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝐴𝑈)
6 simpr 489 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎𝐴)
71, 4, 5, 6mnutrcld 41353 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝑈)
8 mnurndlem2.4 . . . . . . . . 9 (𝜑𝐹:𝐴𝑈)
98ffvelrnda 6843 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ 𝑈)
101, 4, 9, 5mnuprd 41350 . . . . . . 7 ((𝜑𝑎𝐴) → {(𝐹𝑎), 𝐴} ∈ 𝑈)
111, 4, 7, 10mnuprd 41350 . . . . . 6 ((𝜑𝑎𝐴) → {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈)
1211ralrimiva 3114 . . . . 5 (𝜑 → ∀𝑎𝐴 {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈)
13 eqid 2759 . . . . . 6 (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) = (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})
1413rnmptss 6878 . . . . 5 (∀𝑎𝐴 {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈 → ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) ⊆ 𝑈)
1512, 14syl 17 . . . 4 (𝜑 → ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) ⊆ 𝑈)
161, 2, 3, 15mnuop3d 41345 . . 3 (𝜑 → ∃𝑤𝑈𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))
17 simprl 771 . . . 4 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → 𝑤𝑈)
18 sseq2 3919 . . . . 5 (𝑏 = 𝑤 → (ran 𝐹𝑏 ↔ ran 𝐹𝑤))
1918adantl 486 . . . 4 (((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) ∧ 𝑏 = 𝑤) → (ran 𝐹𝑏 ↔ ran 𝐹𝑤))
208adantr 485 . . . . 5 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → 𝐹:𝐴𝑈)
21 mnurndlem2.5 . . . . 5 𝐴 ∈ V
22 simprr 773 . . . . 5 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))
2320, 21, 22mnurndlem1 41355 . . . 4 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ran 𝐹𝑤)
2417, 19, 23rspcedvd 3545 . . 3 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ∃𝑏𝑈 ran 𝐹𝑏)
2516, 24rexlimddv 3216 . 2 (𝜑 → ∃𝑏𝑈 ran 𝐹𝑏)
261, 2, 25mnuss2d 41338 1 (𝜑 → ran 𝐹𝑈)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400  ∀wal 1537   = wceq 1539   ∈ wcel 2112  {cab 2736  ∀wral 3071  ∃wrex 3072  Vcvv 3410   ⊆ wss 3859  𝒫 cpw 4495  {cpr 4525  ∪ cuni 4799   ↦ cmpt 5113  ran crn 5526  ⟶wf 6332  ‘cfv 6336 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-reg 9082 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-eprel 5436  df-fr 5484  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-fv 6344 This theorem is referenced by:  mnurnd  41357
 Copyright terms: Public domain W3C validator