Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnurndlem2 Structured version   Visualization version   GIF version

Theorem mnurndlem2 44273
Description: Lemma for mnurnd 44274. Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnurndlem2.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnurndlem2.2 (𝜑𝑈𝑀)
mnurndlem2.3 (𝜑𝐴𝑈)
mnurndlem2.4 (𝜑𝐹:𝐴𝑈)
mnurndlem2.5 𝐴 ∈ V
Assertion
Ref Expression
mnurndlem2 (𝜑 → ran 𝐹𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙   𝑈,𝑟,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnurndlem2
Dummy variables 𝑣 𝑎 𝑏 𝑤 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnurndlem2.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnurndlem2.2 . 2 (𝜑𝑈𝑀)
3 mnurndlem2.3 . . . 4 (𝜑𝐴𝑈)
42adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑈𝑀)
53adantr 480 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝐴𝑈)
6 simpr 484 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎𝐴)
71, 4, 5, 6mnutrcld 44270 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝑈)
8 mnurndlem2.4 . . . . . . . . 9 (𝜑𝐹:𝐴𝑈)
98ffvelcdmda 7079 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ 𝑈)
101, 4, 9, 5mnuprd 44267 . . . . . . 7 ((𝜑𝑎𝐴) → {(𝐹𝑎), 𝐴} ∈ 𝑈)
111, 4, 7, 10mnuprd 44267 . . . . . 6 ((𝜑𝑎𝐴) → {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈)
1211ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑎𝐴 {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈)
13 eqid 2736 . . . . . 6 (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) = (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})
1413rnmptss 7118 . . . . 5 (∀𝑎𝐴 {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈 → ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) ⊆ 𝑈)
1512, 14syl 17 . . . 4 (𝜑 → ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) ⊆ 𝑈)
161, 2, 3, 15mnuop3d 44262 . . 3 (𝜑 → ∃𝑤𝑈𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))
17 simprl 770 . . . 4 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → 𝑤𝑈)
18 sseq2 3990 . . . . 5 (𝑏 = 𝑤 → (ran 𝐹𝑏 ↔ ran 𝐹𝑤))
1918adantl 481 . . . 4 (((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) ∧ 𝑏 = 𝑤) → (ran 𝐹𝑏 ↔ ran 𝐹𝑤))
208adantr 480 . . . . 5 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → 𝐹:𝐴𝑈)
21 mnurndlem2.5 . . . . 5 𝐴 ∈ V
22 simprr 772 . . . . 5 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))
2320, 21, 22mnurndlem1 44272 . . . 4 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ran 𝐹𝑤)
2417, 19, 23rspcedvd 3608 . . 3 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ∃𝑏𝑈 ran 𝐹𝑏)
2516, 24rexlimddv 3148 . 2 (𝜑 → ∃𝑏𝑈 ran 𝐹𝑏)
261, 2, 25mnuss2d 44255 1 (𝜑 → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2714  wral 3052  wrex 3061  Vcvv 3464  wss 3931  𝒫 cpw 4580  {cpr 4608   cuni 4888  cmpt 5206  ran crn 5660  wf 6532  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-eprel 5558  df-fr 5611  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by:  mnurnd  44274
  Copyright terms: Public domain W3C validator