Step | Hyp | Ref
| Expression |
1 | | mnurndlem2.1 |
. 2
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
2 | | mnurndlem2.2 |
. 2
⊢ (𝜑 → 𝑈 ∈ 𝑀) |
3 | | mnurndlem2.3 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
4 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑈 ∈ 𝑀) |
5 | 3 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐴 ∈ 𝑈) |
6 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
7 | 1, 4, 5, 6 | mnutrcld 41786 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝑈) |
8 | | mnurndlem2.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶𝑈) |
9 | 8 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ 𝑈) |
10 | 1, 4, 9, 5 | mnuprd 41783 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {(𝐹‘𝑎), 𝐴} ∈ 𝑈) |
11 | 1, 4, 7, 10 | mnuprd 41783 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ 𝑈) |
12 | 11 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ 𝑈) |
13 | | eqid 2738 |
. . . . . 6
⊢ (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) = (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) |
14 | 13 | rnmptss 6978 |
. . . . 5
⊢
(∀𝑎 ∈
𝐴 {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ 𝑈 → ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) ⊆ 𝑈) |
15 | 12, 14 | syl 17 |
. . . 4
⊢ (𝜑 → ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) ⊆ 𝑈) |
16 | 1, 2, 3, 15 | mnuop3d 41778 |
. . 3
⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
17 | | simprl 767 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝑤 ∈ 𝑈) |
18 | | sseq2 3943 |
. . . . 5
⊢ (𝑏 = 𝑤 → (ran 𝐹 ⊆ 𝑏 ↔ ran 𝐹 ⊆ 𝑤)) |
19 | 18 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ∧ 𝑏 = 𝑤) → (ran 𝐹 ⊆ 𝑏 ↔ ran 𝐹 ⊆ 𝑤)) |
20 | 8 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝐹:𝐴⟶𝑈) |
21 | | mnurndlem2.5 |
. . . . 5
⊢ 𝐴 ∈ V |
22 | | simprr 769 |
. . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) |
23 | 20, 21, 22 | mnurndlem1 41788 |
. . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ran 𝐹 ⊆ 𝑤) |
24 | 17, 19, 23 | rspcedvd 3555 |
. . 3
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∃𝑏 ∈ 𝑈 ran 𝐹 ⊆ 𝑏) |
25 | 16, 24 | rexlimddv 3219 |
. 2
⊢ (𝜑 → ∃𝑏 ∈ 𝑈 ran 𝐹 ⊆ 𝑏) |
26 | 1, 2, 25 | mnuss2d 41771 |
1
⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |