| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mnurndlem2.1 | . 2
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | 
| 2 |  | mnurndlem2.2 | . 2
⊢ (𝜑 → 𝑈 ∈ 𝑀) | 
| 3 |  | mnurndlem2.3 | . . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑈) | 
| 4 | 2 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑈 ∈ 𝑀) | 
| 5 | 3 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐴 ∈ 𝑈) | 
| 6 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) | 
| 7 | 1, 4, 5, 6 | mnutrcld 44303 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝑈) | 
| 8 |  | mnurndlem2.4 | . . . . . . . . 9
⊢ (𝜑 → 𝐹:𝐴⟶𝑈) | 
| 9 | 8 | ffvelcdmda 7103 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ 𝑈) | 
| 10 | 1, 4, 9, 5 | mnuprd 44300 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {(𝐹‘𝑎), 𝐴} ∈ 𝑈) | 
| 11 | 1, 4, 7, 10 | mnuprd 44300 | . . . . . 6
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ 𝑈) | 
| 12 | 11 | ralrimiva 3145 | . . . . 5
⊢ (𝜑 → ∀𝑎 ∈ 𝐴 {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ 𝑈) | 
| 13 |  | eqid 2736 | . . . . . 6
⊢ (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) = (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) | 
| 14 | 13 | rnmptss 7142 | . . . . 5
⊢
(∀𝑎 ∈
𝐴 {𝑎, {(𝐹‘𝑎), 𝐴}} ∈ 𝑈 → ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) ⊆ 𝑈) | 
| 15 | 12, 14 | syl 17 | . . . 4
⊢ (𝜑 → ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}}) ⊆ 𝑈) | 
| 16 | 1, 2, 3, 15 | mnuop3d 44295 | . . 3
⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | 
| 17 |  | simprl 770 | . . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝑤 ∈ 𝑈) | 
| 18 |  | sseq2 4009 | . . . . 5
⊢ (𝑏 = 𝑤 → (ran 𝐹 ⊆ 𝑏 ↔ ran 𝐹 ⊆ 𝑤)) | 
| 19 | 18 | adantl 481 | . . . 4
⊢ (((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ∧ 𝑏 = 𝑤) → (ran 𝐹 ⊆ 𝑏 ↔ ran 𝐹 ⊆ 𝑤)) | 
| 20 | 8 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → 𝐹:𝐴⟶𝑈) | 
| 21 |  | mnurndlem2.5 | . . . . 5
⊢ 𝐴 ∈ V | 
| 22 |  | simprr 772 | . . . . 5
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | 
| 23 | 20, 21, 22 | mnurndlem1 44305 | . . . 4
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ran 𝐹 ⊆ 𝑤) | 
| 24 | 17, 19, 23 | rspcedvd 3623 | . . 3
⊢ ((𝜑 ∧ (𝑤 ∈ 𝑈 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})𝑖 ∈ 𝑣 → ∃𝑢 ∈ ran (𝑎 ∈ 𝐴 ↦ {𝑎, {(𝐹‘𝑎), 𝐴}})(𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) → ∃𝑏 ∈ 𝑈 ran 𝐹 ⊆ 𝑏) | 
| 25 | 16, 24 | rexlimddv 3160 | . 2
⊢ (𝜑 → ∃𝑏 ∈ 𝑈 ran 𝐹 ⊆ 𝑏) | 
| 26 | 1, 2, 25 | mnuss2d 44288 | 1
⊢ (𝜑 → ran 𝐹 ∈ 𝑈) |