Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnurndlem2 Structured version   Visualization version   GIF version

Theorem mnurndlem2 41789
Description: Lemma for mnurnd 41790. Deduction theorem input. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnurndlem2.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnurndlem2.2 (𝜑𝑈𝑀)
mnurndlem2.3 (𝜑𝐴𝑈)
mnurndlem2.4 (𝜑𝐹:𝐴𝑈)
mnurndlem2.5 𝐴 ∈ V
Assertion
Ref Expression
mnurndlem2 (𝜑 → ran 𝐹𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑞,𝑝,𝑙   𝑈,𝑟,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐹(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnurndlem2
Dummy variables 𝑣 𝑎 𝑏 𝑤 𝑖 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnurndlem2.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnurndlem2.2 . 2 (𝜑𝑈𝑀)
3 mnurndlem2.3 . . . 4 (𝜑𝐴𝑈)
42adantr 480 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑈𝑀)
53adantr 480 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝐴𝑈)
6 simpr 484 . . . . . . . 8 ((𝜑𝑎𝐴) → 𝑎𝐴)
71, 4, 5, 6mnutrcld 41786 . . . . . . 7 ((𝜑𝑎𝐴) → 𝑎𝑈)
8 mnurndlem2.4 . . . . . . . . 9 (𝜑𝐹:𝐴𝑈)
98ffvelrnda 6943 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝐹𝑎) ∈ 𝑈)
101, 4, 9, 5mnuprd 41783 . . . . . . 7 ((𝜑𝑎𝐴) → {(𝐹𝑎), 𝐴} ∈ 𝑈)
111, 4, 7, 10mnuprd 41783 . . . . . 6 ((𝜑𝑎𝐴) → {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈)
1211ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑎𝐴 {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈)
13 eqid 2738 . . . . . 6 (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) = (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})
1413rnmptss 6978 . . . . 5 (∀𝑎𝐴 {𝑎, {(𝐹𝑎), 𝐴}} ∈ 𝑈 → ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) ⊆ 𝑈)
1512, 14syl 17 . . . 4 (𝜑 → ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}}) ⊆ 𝑈)
161, 2, 3, 15mnuop3d 41778 . . 3 (𝜑 → ∃𝑤𝑈𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))
17 simprl 767 . . . 4 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → 𝑤𝑈)
18 sseq2 3943 . . . . 5 (𝑏 = 𝑤 → (ran 𝐹𝑏 ↔ ran 𝐹𝑤))
1918adantl 481 . . . 4 (((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) ∧ 𝑏 = 𝑤) → (ran 𝐹𝑏 ↔ ran 𝐹𝑤))
208adantr 480 . . . . 5 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → 𝐹:𝐴𝑈)
21 mnurndlem2.5 . . . . 5 𝐴 ∈ V
22 simprr 769 . . . . 5 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))
2320, 21, 22mnurndlem1 41788 . . . 4 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ran 𝐹𝑤)
2417, 19, 23rspcedvd 3555 . . 3 ((𝜑 ∧ (𝑤𝑈 ∧ ∀𝑖𝐴 (∃𝑣 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})𝑖𝑣 → ∃𝑢 ∈ ran (𝑎𝐴 ↦ {𝑎, {(𝐹𝑎), 𝐴}})(𝑖𝑢 𝑢𝑤)))) → ∃𝑏𝑈 ran 𝐹𝑏)
2516, 24rexlimddv 3219 . 2 (𝜑 → ∃𝑏𝑈 ran 𝐹𝑏)
261, 2, 25mnuss2d 41771 1 (𝜑 → ran 𝐹𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  wss 3883  𝒫 cpw 4530  {cpr 4560   cuni 4836  cmpt 5153  ran crn 5581  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-fr 5535  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  mnurnd  41790
  Copyright terms: Public domain W3C validator