Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnutrcld Structured version   Visualization version   GIF version

Theorem mnutrcld 43023
Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnutrcld.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnutrcld.2 (𝜑𝑈𝑀)
mnutrcld.3 (𝜑𝐴𝑈)
mnutrcld.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
mnutrcld (𝜑𝐵𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnutrcld
StepHypRef Expression
1 mnutrcld.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnutrcld.2 . 2 (𝜑𝑈𝑀)
3 mnutrcld.3 . . 3 (𝜑𝐴𝑈)
41, 2, 3mnuunid 43021 . 2 (𝜑 𝐴𝑈)
5 mnutrcld.4 . . 3 (𝜑𝐵𝐴)
6 elssuni 4940 . . 3 (𝐵𝐴𝐵 𝐴)
75, 6syl 17 . 2 (𝜑𝐵 𝐴)
81, 2, 4, 7mnussd 43007 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539   = wceq 1541  wcel 2106  {cab 2709  wral 3061  wrex 3070  wss 3947  𝒫 cpw 4601   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1089  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-in 3954  df-ss 3964  df-pw 4603  df-sn 4628  df-uni 4908
This theorem is referenced by:  mnutrd  43024  mnurndlem2  43026
  Copyright terms: Public domain W3C validator