|   | Mathbox for Rohan Ridenour | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnutrcld | Structured version Visualization version GIF version | ||
| Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| mnutrcld.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | 
| mnutrcld.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) | 
| mnutrcld.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) | 
| mnutrcld.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) | 
| Ref | Expression | 
|---|---|
| mnutrcld | ⊢ (𝜑 → 𝐵 ∈ 𝑈) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mnutrcld.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 2 | mnutrcld.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 3 | mnutrcld.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 4 | 1, 2, 3 | mnuunid 44301 | . 2 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) | 
| 5 | mnutrcld.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 6 | elssuni 4936 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝐴) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) | 
| 8 | 1, 2, 4, 7 | mnussd 44287 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2713 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 𝒫 cpw 4599 ∪ cuni 4906 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-in 3957 df-ss 3967 df-pw 4601 df-sn 4626 df-uni 4907 | 
| This theorem is referenced by: mnutrd 44304 mnurndlem2 44306 | 
| Copyright terms: Public domain | W3C validator |