![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnutrcld | Structured version Visualization version GIF version |
Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnutrcld.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnutrcld.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnutrcld.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
mnutrcld.4 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
mnutrcld | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnutrcld.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
2 | mnutrcld.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
3 | mnutrcld.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
4 | 1, 2, 3 | mnuunid 43609 | . 2 ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) |
5 | mnutrcld.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
6 | elssuni 4934 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝐴) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ⊆ ∪ 𝐴) |
8 | 1, 2, 4, 7 | mnussd 43595 | 1 ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 {cab 2703 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 𝒫 cpw 4597 ∪ cuni 4902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-in 3950 df-ss 3960 df-pw 4599 df-sn 4624 df-uni 4903 |
This theorem is referenced by: mnutrd 43612 mnurndlem2 43614 |
Copyright terms: Public domain | W3C validator |