Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnutrcld Structured version   Visualization version   GIF version

Theorem mnutrcld 42136
Description: Minimal universes contain the elements of their elements. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnutrcld.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnutrcld.2 (𝜑𝑈𝑀)
mnutrcld.3 (𝜑𝐴𝑈)
mnutrcld.4 (𝜑𝐵𝐴)
Assertion
Ref Expression
mnutrcld (𝜑𝐵𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnutrcld
StepHypRef Expression
1 mnutrcld.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnutrcld.2 . 2 (𝜑𝑈𝑀)
3 mnutrcld.3 . . 3 (𝜑𝐴𝑈)
41, 2, 3mnuunid 42134 . 2 (𝜑 𝐴𝑈)
5 mnutrcld.4 . . 3 (𝜑𝐵𝐴)
6 elssuni 4882 . . 3 (𝐵𝐴𝐵 𝐴)
75, 6syl 17 . 2 (𝜑𝐵 𝐴)
81, 2, 4, 7mnussd 42120 1 (𝜑𝐵𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1538   = wceq 1540  wcel 2105  {cab 2713  wral 3061  wrex 3070  wss 3896  𝒫 cpw 4544   cuni 4849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5237
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-in 3903  df-ss 3913  df-pw 4546  df-sn 4571  df-uni 4850
This theorem is referenced by:  mnutrd  42137  mnurndlem2  42139
  Copyright terms: Public domain W3C validator