Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnutrd Structured version   Visualization version   GIF version

Theorem mnutrd 44321
Description: Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnutrd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnutrd.2 (𝜑𝑈𝑀)
Assertion
Ref Expression
mnutrd (𝜑 → Tr 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnutrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnutrd.1 . . . . 5 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnutrd.2 . . . . . 6 (𝜑𝑈𝑀)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑦𝑦𝑈)) → 𝑈𝑀)
4 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥𝑦𝑦𝑈)) → 𝑦𝑈)
5 simprl 770 . . . . 5 ((𝜑 ∧ (𝑥𝑦𝑦𝑈)) → 𝑥𝑦)
61, 3, 4, 5mnutrcld 44320 . . . 4 ((𝜑 ∧ (𝑥𝑦𝑦𝑈)) → 𝑥𝑈)
76ex 412 . . 3 (𝜑 → ((𝑥𝑦𝑦𝑈) → 𝑥𝑈))
87alrimivv 1929 . 2 (𝜑 → ∀𝑥𝑦((𝑥𝑦𝑦𝑈) → 𝑥𝑈))
9 dftr2 5198 . 2 (Tr 𝑈 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑈) → 𝑥𝑈))
108, 9sylibr 234 1 (𝜑 → Tr 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  wrex 3056  wss 3897  𝒫 cpw 4547   cuni 4856  Tr wtr 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914  df-pw 4549  df-sn 4574  df-uni 4857  df-tr 5197
This theorem is referenced by:  mnugrud  44325
  Copyright terms: Public domain W3C validator