Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnutrd Structured version   Visualization version   GIF version

Theorem mnutrd 41829
Description: Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnutrd.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnutrd.2 (𝜑𝑈𝑀)
Assertion
Ref Expression
mnutrd (𝜑 → Tr 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnutrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnutrd.1 . . . . 5 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnutrd.2 . . . . . 6 (𝜑𝑈𝑀)
32adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑦𝑦𝑈)) → 𝑈𝑀)
4 simprr 769 . . . . 5 ((𝜑 ∧ (𝑥𝑦𝑦𝑈)) → 𝑦𝑈)
5 simprl 767 . . . . 5 ((𝜑 ∧ (𝑥𝑦𝑦𝑈)) → 𝑥𝑦)
61, 3, 4, 5mnutrcld 41828 . . . 4 ((𝜑 ∧ (𝑥𝑦𝑦𝑈)) → 𝑥𝑈)
76ex 412 . . 3 (𝜑 → ((𝑥𝑦𝑦𝑈) → 𝑥𝑈))
87alrimivv 1932 . 2 (𝜑 → ∀𝑥𝑦((𝑥𝑦𝑦𝑈) → 𝑥𝑈))
9 dftr2 5194 . 2 (Tr 𝑈 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝑈) → 𝑥𝑈))
108, 9sylibr 233 1 (𝜑 → Tr 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2107  {cab 2714  wral 3062  wrex 3063  wss 3888  𝒫 cpw 4535   cuni 4841  Tr wtr 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-ext 2708  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3429  df-in 3895  df-ss 3905  df-pw 4537  df-sn 4564  df-uni 4842  df-tr 5193
This theorem is referenced by:  mnugrud  41833
  Copyright terms: Public domain W3C validator