| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnutrd | Structured version Visualization version GIF version | ||
| Description: Minimal universes are transitive. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mnutrd.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
| mnutrd.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
| Ref | Expression |
|---|---|
| mnutrd | ⊢ (𝜑 → Tr 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnutrd.1 | . . . . 5 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 2 | mnutrd.2 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 3 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈)) → 𝑈 ∈ 𝑀) |
| 4 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈)) → 𝑦 ∈ 𝑈) | |
| 5 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑦) | |
| 6 | 1, 3, 4, 5 | mnutrcld 44261 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈)) → 𝑥 ∈ 𝑈) |
| 7 | 6 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑈)) |
| 8 | 7 | alrimivv 1928 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑈)) |
| 9 | dftr2 5218 | . 2 ⊢ (Tr 𝑈 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑈) → 𝑥 ∈ 𝑈)) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ (𝜑 → Tr 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∃wrex 3054 ⊆ wss 3916 𝒫 cpw 4565 ∪ cuni 4873 Tr wtr 5216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-in 3923 df-ss 3933 df-pw 4567 df-sn 4592 df-uni 4874 df-tr 5217 |
| This theorem is referenced by: mnugrud 44266 |
| Copyright terms: Public domain | W3C validator |