| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnuund | Structured version Visualization version GIF version | ||
| Description: Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mnuund.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
| mnuund.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
| mnuund.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| mnuund.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
| Ref | Expression |
|---|---|
| mnuund | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnuund.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
| 2 | mnuund.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
| 3 | uniprg 4904 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 5 | mnuund.1 | . . 3 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 6 | mnuund.2 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 7 | 5, 6, 1, 2 | mnuprd 44267 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| 8 | 5, 6, 7 | mnuunid 44268 | . 2 ⊢ (𝜑 → ∪ {𝐴, 𝐵} ∈ 𝑈) |
| 9 | 4, 8 | eqeltrrd 2836 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 ∃wrex 3061 ∪ cun 3929 ⊆ wss 3931 𝒫 cpw 4580 {cpr 4608 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-pw 4582 df-sn 4607 df-pr 4609 df-uni 4889 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |