![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnuund | Structured version Visualization version GIF version |
Description: Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
Ref | Expression |
---|---|
mnuund.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
mnuund.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
mnuund.3 | ⊢ (𝜑 → 𝐴 ∈ 𝑈) |
mnuund.4 | ⊢ (𝜑 → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
mnuund | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnuund.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑈) | |
2 | mnuund.4 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑈) | |
3 | uniprg 4928 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
5 | mnuund.1 | . . 3 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
6 | mnuund.2 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
7 | 5, 6, 1, 2 | mnuprd 44272 | . . 3 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
8 | 5, 6, 7 | mnuunid 44273 | . 2 ⊢ (𝜑 → ∪ {𝐴, 𝐵} ∈ 𝑈) |
9 | 4, 8 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 ∪ cun 3961 ⊆ wss 3963 𝒫 cpw 4605 {cpr 4633 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-pw 4607 df-sn 4632 df-pr 4634 df-uni 4913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |