Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuund Structured version   Visualization version   GIF version

Theorem mnuund 41849
Description: Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuund.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuund.2 (𝜑𝑈𝑀)
mnuund.3 (𝜑𝐴𝑈)
mnuund.4 (𝜑𝐵𝑈)
Assertion
Ref Expression
mnuund (𝜑 → (𝐴𝐵) ∈ 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuund
StepHypRef Expression
1 mnuund.3 . . 3 (𝜑𝐴𝑈)
2 mnuund.4 . . 3 (𝜑𝐵𝑈)
3 uniprg 4861 . . 3 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3syl2anc 583 . 2 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
5 mnuund.1 . . 3 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
6 mnuund.2 . . 3 (𝜑𝑈𝑀)
75, 6, 1, 2mnuprd 41847 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
85, 6, 7mnuunid 41848 . 2 (𝜑 {𝐴, 𝐵} ∈ 𝑈)
94, 8eqeltrrd 2841 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  wcel 2109  {cab 2716  wral 3065  wrex 3066  cun 3889  wss 3891  𝒫 cpw 4538  {cpr 4568   cuni 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-pw 4540  df-sn 4567  df-pr 4569  df-uni 4845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator