Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuund Structured version   Visualization version   GIF version

Theorem mnuund 40910
Description: Minimal universes are closed under binary unions. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuund.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuund.2 (𝜑𝑈𝑀)
mnuund.3 (𝜑𝐴𝑈)
mnuund.4 (𝜑𝐵𝑈)
Assertion
Ref Expression
mnuund (𝜑 → (𝐴𝐵) ∈ 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuund
StepHypRef Expression
1 mnuund.3 . . 3 (𝜑𝐴𝑈)
2 mnuund.4 . . 3 (𝜑𝐵𝑈)
3 uniprg 4842 . . 3 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
41, 2, 3syl2anc 587 . 2 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
5 mnuund.1 . . 3 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
6 mnuund.2 . . 3 (𝜑𝑈𝑀)
75, 6, 1, 2mnuprd 40908 . . 3 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
85, 6, 7mnuunid 40909 . 2 (𝜑 {𝐴, 𝐵} ∈ 𝑈)
94, 8eqeltrrd 2917 1 (𝜑 → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wcel 2115  {cab 2802  wral 3133  wrex 3134  cun 3917  wss 3919  𝒫 cpw 4522  {cpr 4552   cuni 4824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-pw 4524  df-sn 4551  df-pr 4553  df-uni 4825
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator