MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetval Structured version   Visualization version   GIF version

Theorem meetval 18436
Description: Meet value. Since both sides evaluate to when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝐺 requirement. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
meetdef.u 𝐺 = (glb‘𝐾)
meetdef.m = (meet‘𝐾)
meetdef.k (𝜑𝐾𝑉)
meetdef.x (𝜑𝑋𝑊)
meetdef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
meetval (𝜑 → (𝑋 𝑌) = (𝐺‘{𝑋, 𝑌}))

Proof of Theorem meetval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meetdef.k . . . . . 6 (𝜑𝐾𝑉)
2 meetdef.u . . . . . . 7 𝐺 = (glb‘𝐾)
3 meetdef.m . . . . . . 7 = (meet‘𝐾)
42, 3meetfval2 18433 . . . . . 6 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
51, 4syl 17 . . . . 5 (𝜑 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
65oveqd 7448 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌))
76adantr 480 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌))
8 simpr 484 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → {𝑋, 𝑌} ∈ dom 𝐺)
9 eqidd 2738 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌}))
10 meetdef.x . . . . . 6 (𝜑𝑋𝑊)
11 meetdef.y . . . . . 6 (𝜑𝑌𝑍)
12 fvexd 6921 . . . . . 6 (𝜑 → (𝐺‘{𝑋, 𝑌}) ∈ V)
13 preq12 4735 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌})
1413eleq1d 2826 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺))
15143adant3 1133 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺))
16 simp3 1139 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → 𝑧 = (𝐺‘{𝑋, 𝑌}))
1713fveq2d 6910 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐺‘{𝑥, 𝑦}) = (𝐺‘{𝑋, 𝑌}))
18173adant3 1133 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → (𝐺‘{𝑥, 𝑦}) = (𝐺‘{𝑋, 𝑌}))
1916, 18eqeq12d 2753 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → (𝑧 = (𝐺‘{𝑥, 𝑦}) ↔ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})))
2015, 19anbi12d 632 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → (({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ ({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌}))))
21 moeq 3713 . . . . . . . 8 ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
2221moani 2553 . . . . . . 7 ∃*𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))
23 eqid 2737 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}
2420, 22, 23ovigg 7578 . . . . . 6 ((𝑋𝑊𝑌𝑍 ∧ (𝐺‘{𝑋, 𝑌}) ∈ V) → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌})))
2510, 11, 12, 24syl3anc 1373 . . . . 5 (𝜑 → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌})))
2625adantr 480 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌})))
278, 9, 26mp2and 699 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌}))
287, 27eqtrd 2777 . 2 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 𝑌) = (𝐺‘{𝑋, 𝑌}))
292, 3, 1, 10, 11meetdef 18435 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝐺))
3029notbid 318 . . . . 5 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ dom ↔ ¬ {𝑋, 𝑌} ∈ dom 𝐺))
31 df-ov 7434 . . . . . 6 (𝑋 𝑌) = ( ‘⟨𝑋, 𝑌⟩)
32 ndmfv 6941 . . . . . 6 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → ( ‘⟨𝑋, 𝑌⟩) = ∅)
3331, 32eqtrid 2789 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → (𝑋 𝑌) = ∅)
3430, 33biimtrrdi 254 . . . 4 (𝜑 → (¬ {𝑋, 𝑌} ∈ dom 𝐺 → (𝑋 𝑌) = ∅))
3534imp 406 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 𝑌) = ∅)
36 ndmfv 6941 . . . 4 (¬ {𝑋, 𝑌} ∈ dom 𝐺 → (𝐺‘{𝑋, 𝑌}) = ∅)
3736adantl 481 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝐺‘{𝑋, 𝑌}) = ∅)
3835, 37eqtr4d 2780 . 2 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 𝑌) = (𝐺‘{𝑋, 𝑌}))
3928, 38pm2.61dan 813 1 (𝜑 → (𝑋 𝑌) = (𝐺‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333  {cpr 4628  cop 4632  dom cdm 5685  cfv 6561  (class class class)co 7431  {coprab 7432  glbcglb 18356  meetcmee 18358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-glb 18392  df-meet 18394
This theorem is referenced by:  meetcl  18437  meetval2  18440  meetcomALT  18448  pmapmeet  39775  diameetN  41058  dihmeetlem2N  41301  dihmeetcN  41304  dihmeet  41345  posmidm  48870  toplatmeet  48892
  Copyright terms: Public domain W3C validator