MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetval Structured version   Visualization version   GIF version

Theorem meetval 18348
Description: Meet value. Since both sides evaluate to βˆ… when they don't exist, for convenience we drop the {𝑋, π‘Œ} ∈ dom 𝐺 requirement. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
meetdef.u 𝐺 = (glbβ€˜πΎ)
meetdef.m ∧ = (meetβ€˜πΎ)
meetdef.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
meetdef.x (πœ‘ β†’ 𝑋 ∈ π‘Š)
meetdef.y (πœ‘ β†’ π‘Œ ∈ 𝑍)
Assertion
Ref Expression
meetval (πœ‘ β†’ (𝑋 ∧ π‘Œ) = (πΊβ€˜{𝑋, π‘Œ}))

Proof of Theorem meetval
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meetdef.k . . . . . 6 (πœ‘ β†’ 𝐾 ∈ 𝑉)
2 meetdef.u . . . . . . 7 𝐺 = (glbβ€˜πΎ)
3 meetdef.m . . . . . . 7 ∧ = (meetβ€˜πΎ)
42, 3meetfval2 18345 . . . . . 6 (𝐾 ∈ 𝑉 β†’ ∧ = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))})
51, 4syl 17 . . . . 5 (πœ‘ β†’ ∧ = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))})
65oveqd 7428 . . . 4 (πœ‘ β†’ (𝑋 ∧ π‘Œ) = (𝑋{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))}π‘Œ))
76adantr 479 . . 3 ((πœ‘ ∧ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ (𝑋 ∧ π‘Œ) = (𝑋{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))}π‘Œ))
8 simpr 483 . . . 4 ((πœ‘ ∧ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ {𝑋, π‘Œ} ∈ dom 𝐺)
9 eqidd 2731 . . . 4 ((πœ‘ ∧ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ (πΊβ€˜{𝑋, π‘Œ}) = (πΊβ€˜{𝑋, π‘Œ}))
10 meetdef.x . . . . . 6 (πœ‘ β†’ 𝑋 ∈ π‘Š)
11 meetdef.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ 𝑍)
12 fvexd 6905 . . . . . 6 (πœ‘ β†’ (πΊβ€˜{𝑋, π‘Œ}) ∈ V)
13 preq12 4738 . . . . . . . . . 10 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ {π‘₯, 𝑦} = {𝑋, π‘Œ})
1413eleq1d 2816 . . . . . . . . 9 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ ({π‘₯, 𝑦} ∈ dom 𝐺 ↔ {𝑋, π‘Œ} ∈ dom 𝐺))
15143adant3 1130 . . . . . . . 8 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ ∧ 𝑧 = (πΊβ€˜{𝑋, π‘Œ})) β†’ ({π‘₯, 𝑦} ∈ dom 𝐺 ↔ {𝑋, π‘Œ} ∈ dom 𝐺))
16 simp3 1136 . . . . . . . . 9 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ ∧ 𝑧 = (πΊβ€˜{𝑋, π‘Œ})) β†’ 𝑧 = (πΊβ€˜{𝑋, π‘Œ}))
1713fveq2d 6894 . . . . . . . . . 10 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ) β†’ (πΊβ€˜{π‘₯, 𝑦}) = (πΊβ€˜{𝑋, π‘Œ}))
18173adant3 1130 . . . . . . . . 9 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ ∧ 𝑧 = (πΊβ€˜{𝑋, π‘Œ})) β†’ (πΊβ€˜{π‘₯, 𝑦}) = (πΊβ€˜{𝑋, π‘Œ}))
1916, 18eqeq12d 2746 . . . . . . . 8 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ ∧ 𝑧 = (πΊβ€˜{𝑋, π‘Œ})) β†’ (𝑧 = (πΊβ€˜{π‘₯, 𝑦}) ↔ (πΊβ€˜{𝑋, π‘Œ}) = (πΊβ€˜{𝑋, π‘Œ})))
2015, 19anbi12d 629 . . . . . . 7 ((π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ ∧ 𝑧 = (πΊβ€˜{𝑋, π‘Œ})) β†’ (({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦})) ↔ ({𝑋, π‘Œ} ∈ dom 𝐺 ∧ (πΊβ€˜{𝑋, π‘Œ}) = (πΊβ€˜{𝑋, π‘Œ}))))
21 moeq 3702 . . . . . . . 8 βˆƒ*𝑧 𝑧 = (πΊβ€˜{π‘₯, 𝑦})
2221moani 2545 . . . . . . 7 βˆƒ*𝑧({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))
23 eqid 2730 . . . . . . 7 {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))} = {⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))}
2420, 22, 23ovigg 7555 . . . . . 6 ((𝑋 ∈ π‘Š ∧ π‘Œ ∈ 𝑍 ∧ (πΊβ€˜{𝑋, π‘Œ}) ∈ V) β†’ (({𝑋, π‘Œ} ∈ dom 𝐺 ∧ (πΊβ€˜{𝑋, π‘Œ}) = (πΊβ€˜{𝑋, π‘Œ})) β†’ (𝑋{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))}π‘Œ) = (πΊβ€˜{𝑋, π‘Œ})))
2510, 11, 12, 24syl3anc 1369 . . . . 5 (πœ‘ β†’ (({𝑋, π‘Œ} ∈ dom 𝐺 ∧ (πΊβ€˜{𝑋, π‘Œ}) = (πΊβ€˜{𝑋, π‘Œ})) β†’ (𝑋{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))}π‘Œ) = (πΊβ€˜{𝑋, π‘Œ})))
2625adantr 479 . . . 4 ((πœ‘ ∧ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ (({𝑋, π‘Œ} ∈ dom 𝐺 ∧ (πΊβ€˜{𝑋, π‘Œ}) = (πΊβ€˜{𝑋, π‘Œ})) β†’ (𝑋{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))}π‘Œ) = (πΊβ€˜{𝑋, π‘Œ})))
278, 9, 26mp2and 695 . . 3 ((πœ‘ ∧ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ (𝑋{⟨⟨π‘₯, π‘¦βŸ©, π‘§βŸ© ∣ ({π‘₯, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (πΊβ€˜{π‘₯, 𝑦}))}π‘Œ) = (πΊβ€˜{𝑋, π‘Œ}))
287, 27eqtrd 2770 . 2 ((πœ‘ ∧ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ (𝑋 ∧ π‘Œ) = (πΊβ€˜{𝑋, π‘Œ}))
292, 3, 1, 10, 11meetdef 18347 . . . . . 6 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ ↔ {𝑋, π‘Œ} ∈ dom 𝐺))
3029notbid 317 . . . . 5 (πœ‘ β†’ (Β¬ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ ↔ Β¬ {𝑋, π‘Œ} ∈ dom 𝐺))
31 df-ov 7414 . . . . . 6 (𝑋 ∧ π‘Œ) = ( ∧ β€˜βŸ¨π‘‹, π‘ŒβŸ©)
32 ndmfv 6925 . . . . . 6 (Β¬ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ β†’ ( ∧ β€˜βŸ¨π‘‹, π‘ŒβŸ©) = βˆ…)
3331, 32eqtrid 2782 . . . . 5 (Β¬ βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∧ β†’ (𝑋 ∧ π‘Œ) = βˆ…)
3430, 33syl6bir 253 . . . 4 (πœ‘ β†’ (Β¬ {𝑋, π‘Œ} ∈ dom 𝐺 β†’ (𝑋 ∧ π‘Œ) = βˆ…))
3534imp 405 . . 3 ((πœ‘ ∧ Β¬ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ (𝑋 ∧ π‘Œ) = βˆ…)
36 ndmfv 6925 . . . 4 (Β¬ {𝑋, π‘Œ} ∈ dom 𝐺 β†’ (πΊβ€˜{𝑋, π‘Œ}) = βˆ…)
3736adantl 480 . . 3 ((πœ‘ ∧ Β¬ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ (πΊβ€˜{𝑋, π‘Œ}) = βˆ…)
3835, 37eqtr4d 2773 . 2 ((πœ‘ ∧ Β¬ {𝑋, π‘Œ} ∈ dom 𝐺) β†’ (𝑋 ∧ π‘Œ) = (πΊβ€˜{𝑋, π‘Œ}))
3928, 38pm2.61dan 809 1 (πœ‘ β†’ (𝑋 ∧ π‘Œ) = (πΊβ€˜{𝑋, π‘Œ}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  Vcvv 3472  βˆ…c0 4321  {cpr 4629  βŸ¨cop 4633  dom cdm 5675  β€˜cfv 6542  (class class class)co 7411  {coprab 7412  glbcglb 18267  meetcmee 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-glb 18304  df-meet 18306
This theorem is referenced by:  meetcl  18349  meetval2  18352  meetcomALT  18360  pmapmeet  38947  diameetN  40230  dihmeetlem2N  40473  dihmeetcN  40476  dihmeet  40517  posmidm  47693  toplatmeet  47715
  Copyright terms: Public domain W3C validator