MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetval Structured version   Visualization version   GIF version

Theorem meetval 18357
Description: Meet value. Since both sides evaluate to when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝐺 requirement. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
meetdef.u 𝐺 = (glb‘𝐾)
meetdef.m = (meet‘𝐾)
meetdef.k (𝜑𝐾𝑉)
meetdef.x (𝜑𝑋𝑊)
meetdef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
meetval (𝜑 → (𝑋 𝑌) = (𝐺‘{𝑋, 𝑌}))

Proof of Theorem meetval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 meetdef.k . . . . . 6 (𝜑𝐾𝑉)
2 meetdef.u . . . . . . 7 𝐺 = (glb‘𝐾)
3 meetdef.m . . . . . . 7 = (meet‘𝐾)
42, 3meetfval2 18354 . . . . . 6 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
51, 4syl 17 . . . . 5 (𝜑 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
65oveqd 7407 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌))
76adantr 480 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌))
8 simpr 484 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → {𝑋, 𝑌} ∈ dom 𝐺)
9 eqidd 2731 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌}))
10 meetdef.x . . . . . 6 (𝜑𝑋𝑊)
11 meetdef.y . . . . . 6 (𝜑𝑌𝑍)
12 fvexd 6876 . . . . . 6 (𝜑 → (𝐺‘{𝑋, 𝑌}) ∈ V)
13 preq12 4702 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌})
1413eleq1d 2814 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺))
15143adant3 1132 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺))
16 simp3 1138 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → 𝑧 = (𝐺‘{𝑋, 𝑌}))
1713fveq2d 6865 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝐺‘{𝑥, 𝑦}) = (𝐺‘{𝑋, 𝑌}))
18173adant3 1132 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → (𝐺‘{𝑥, 𝑦}) = (𝐺‘{𝑋, 𝑌}))
1916, 18eqeq12d 2746 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → (𝑧 = (𝐺‘{𝑥, 𝑦}) ↔ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})))
2015, 19anbi12d 632 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝐺‘{𝑋, 𝑌})) → (({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ ({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌}))))
21 moeq 3681 . . . . . . . 8 ∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦})
2221moani 2547 . . . . . . 7 ∃*𝑧({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))
23 eqid 2730 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}
2420, 22, 23ovigg 7537 . . . . . 6 ((𝑋𝑊𝑌𝑍 ∧ (𝐺‘{𝑋, 𝑌}) ∈ V) → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌})))
2510, 11, 12, 24syl3anc 1373 . . . . 5 (𝜑 → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌})))
2625adantr 480 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌})))
278, 9, 26mp2and 699 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌}))
287, 27eqtrd 2765 . 2 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 𝑌) = (𝐺‘{𝑋, 𝑌}))
292, 3, 1, 10, 11meetdef 18356 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝐺))
3029notbid 318 . . . . 5 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ dom ↔ ¬ {𝑋, 𝑌} ∈ dom 𝐺))
31 df-ov 7393 . . . . . 6 (𝑋 𝑌) = ( ‘⟨𝑋, 𝑌⟩)
32 ndmfv 6896 . . . . . 6 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → ( ‘⟨𝑋, 𝑌⟩) = ∅)
3331, 32eqtrid 2777 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → (𝑋 𝑌) = ∅)
3430, 33biimtrrdi 254 . . . 4 (𝜑 → (¬ {𝑋, 𝑌} ∈ dom 𝐺 → (𝑋 𝑌) = ∅))
3534imp 406 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 𝑌) = ∅)
36 ndmfv 6896 . . . 4 (¬ {𝑋, 𝑌} ∈ dom 𝐺 → (𝐺‘{𝑋, 𝑌}) = ∅)
3736adantl 481 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝐺‘{𝑋, 𝑌}) = ∅)
3835, 37eqtr4d 2768 . 2 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 𝑌) = (𝐺‘{𝑋, 𝑌}))
3928, 38pm2.61dan 812 1 (𝜑 → (𝑋 𝑌) = (𝐺‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  {cpr 4594  cop 4598  dom cdm 5641  cfv 6514  (class class class)co 7390  {coprab 7391  glbcglb 18278  meetcmee 18280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-glb 18313  df-meet 18315
This theorem is referenced by:  meetcl  18358  meetval2  18361  meetcomALT  18369  pmapmeet  39774  diameetN  41057  dihmeetlem2N  41300  dihmeetcN  41303  dihmeet  41344  posmidm  48965  toplatmeet  48995
  Copyright terms: Public domain W3C validator