Step | Hyp | Ref
| Expression |
1 | | meetdef.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
2 | | meetdef.u |
. . . . . . 7
⊢ 𝐺 = (glb‘𝐾) |
3 | | meetdef.m |
. . . . . . 7
⊢ ∧ =
(meet‘𝐾) |
4 | 2, 3 | meetfval2 17706 |
. . . . . 6
⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
5 | 1, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
6 | 5 | oveqd 7173 |
. . . 4
⊢ (𝜑 → (𝑋 ∧ 𝑌) = (𝑋{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌)) |
7 | 6 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 ∧ 𝑌) = (𝑋{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌)) |
8 | | simpr 488 |
. . . 4
⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → {𝑋, 𝑌} ∈ dom 𝐺) |
9 | | eqidd 2759 |
. . . 4
⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) |
10 | | meetdef.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑊) |
11 | | meetdef.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ 𝑍) |
12 | | fvexd 6678 |
. . . . . 6
⊢ (𝜑 → (𝐺‘{𝑋, 𝑌}) ∈ V) |
13 | | preq12 4631 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌}) |
14 | 13 | eleq1d 2836 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
15 | 14 | 3adant3 1129 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = (𝐺‘{𝑋, 𝑌})) → ({𝑥, 𝑦} ∈ dom 𝐺 ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
16 | | simp3 1135 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = (𝐺‘{𝑋, 𝑌})) → 𝑧 = (𝐺‘{𝑋, 𝑌})) |
17 | 13 | fveq2d 6667 |
. . . . . . . . . 10
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝐺‘{𝑥, 𝑦}) = (𝐺‘{𝑋, 𝑌})) |
18 | 17 | 3adant3 1129 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = (𝐺‘{𝑋, 𝑌})) → (𝐺‘{𝑥, 𝑦}) = (𝐺‘{𝑋, 𝑌})) |
19 | 16, 18 | eqeq12d 2774 |
. . . . . . . 8
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = (𝐺‘{𝑋, 𝑌})) → (𝑧 = (𝐺‘{𝑥, 𝑦}) ↔ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌}))) |
20 | 15, 19 | anbi12d 633 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ∧ 𝑧 = (𝐺‘{𝑋, 𝑌})) → (({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦})) ↔ ({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})))) |
21 | | moeq 3623 |
. . . . . . . 8
⊢
∃*𝑧 𝑧 = (𝐺‘{𝑥, 𝑦}) |
22 | 21 | moani 2571 |
. . . . . . 7
⊢
∃*𝑧({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦})) |
23 | | eqid 2758 |
. . . . . . 7
⊢
{〈〈𝑥,
𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} |
24 | 20, 22, 23 | ovigg 7296 |
. . . . . 6
⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍 ∧ (𝐺‘{𝑋, 𝑌}) ∈ V) → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌}))) |
25 | 10, 11, 12, 24 | syl3anc 1368 |
. . . . 5
⊢ (𝜑 → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌}))) |
26 | 25 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (({𝑋, 𝑌} ∈ dom 𝐺 ∧ (𝐺‘{𝑋, 𝑌}) = (𝐺‘{𝑋, 𝑌})) → (𝑋{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌}))) |
27 | 8, 9, 26 | mp2and 698 |
. . 3
⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}𝑌) = (𝐺‘{𝑋, 𝑌})) |
28 | 7, 27 | eqtrd 2793 |
. 2
⊢ ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 ∧ 𝑌) = (𝐺‘{𝑋, 𝑌})) |
29 | 2, 3, 1, 10, 11 | meetdef 17708 |
. . . . . 6
⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) |
30 | 29 | notbid 321 |
. . . . 5
⊢ (𝜑 → (¬ 〈𝑋, 𝑌〉 ∈ dom ∧ ↔ ¬ {𝑋, 𝑌} ∈ dom 𝐺)) |
31 | | df-ov 7159 |
. . . . . 6
⊢ (𝑋 ∧ 𝑌) = ( ∧ ‘〈𝑋, 𝑌〉) |
32 | | ndmfv 6693 |
. . . . . 6
⊢ (¬
〈𝑋, 𝑌〉 ∈ dom ∧ → ( ∧
‘〈𝑋, 𝑌〉) =
∅) |
33 | 31, 32 | syl5eq 2805 |
. . . . 5
⊢ (¬
〈𝑋, 𝑌〉 ∈ dom ∧ → (𝑋 ∧ 𝑌) = ∅) |
34 | 30, 33 | syl6bir 257 |
. . . 4
⊢ (𝜑 → (¬ {𝑋, 𝑌} ∈ dom 𝐺 → (𝑋 ∧ 𝑌) = ∅)) |
35 | 34 | imp 410 |
. . 3
⊢ ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 ∧ 𝑌) = ∅) |
36 | | ndmfv 6693 |
. . . 4
⊢ (¬
{𝑋, 𝑌} ∈ dom 𝐺 → (𝐺‘{𝑋, 𝑌}) = ∅) |
37 | 36 | adantl 485 |
. . 3
⊢ ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝐺‘{𝑋, 𝑌}) = ∅) |
38 | 35, 37 | eqtr4d 2796 |
. 2
⊢ ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝐺) → (𝑋 ∧ 𝑌) = (𝐺‘{𝑋, 𝑌})) |
39 | 28, 38 | pm2.61dan 812 |
1
⊢ (𝜑 → (𝑋 ∧ 𝑌) = (𝐺‘{𝑋, 𝑌})) |