| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunmapdisj | Structured version Visualization version GIF version | ||
| Description: The union ∪ 𝑛 ∈ 𝐶(𝐴 ↑m 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| iunmapdisj | ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑m 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moeq 3661 | . . . 4 ⊢ ∃*𝑛 𝑛 = dom 𝐵 | |
| 2 | elmapi 8773 | . . . . . 6 ⊢ (𝐵 ∈ (𝐴 ↑m 𝑛) → 𝐵:𝑛⟶𝐴) | |
| 3 | fdm 6660 | . . . . . . 7 ⊢ (𝐵:𝑛⟶𝐴 → dom 𝐵 = 𝑛) | |
| 4 | 3 | eqcomd 2737 | . . . . . 6 ⊢ (𝐵:𝑛⟶𝐴 → 𝑛 = dom 𝐵) |
| 5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ (𝐴 ↑m 𝑛) → 𝑛 = dom 𝐵) |
| 6 | 5 | moimi 2540 | . . . 4 ⊢ (∃*𝑛 𝑛 = dom 𝐵 → ∃*𝑛 𝐵 ∈ (𝐴 ↑m 𝑛)) |
| 7 | 1, 6 | ax-mp 5 | . . 3 ⊢ ∃*𝑛 𝐵 ∈ (𝐴 ↑m 𝑛) |
| 8 | 7 | moani 2548 | . 2 ⊢ ∃*𝑛(𝑛 ∈ 𝐶 ∧ 𝐵 ∈ (𝐴 ↑m 𝑛)) |
| 9 | df-rmo 3346 | . 2 ⊢ (∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑m 𝑛) ↔ ∃*𝑛(𝑛 ∈ 𝐶 ∧ 𝐵 ∈ (𝐴 ↑m 𝑛))) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑m 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 ∃*wrmo 3345 dom cdm 5614 ⟶wf 6477 (class class class)co 7346 ↑m cmap 8750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |