MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmapdisj Structured version   Visualization version   GIF version

Theorem iunmapdisj 9917
Description: The union 𝑛𝐶(𝐴m 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
iunmapdisj ∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛)
Distinct variable group:   𝐵,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑛)

Proof of Theorem iunmapdisj
StepHypRef Expression
1 moeq 3667 . . . 4 ∃*𝑛 𝑛 = dom 𝐵
2 elmapi 8776 . . . . . 6 (𝐵 ∈ (𝐴m 𝑛) → 𝐵:𝑛𝐴)
3 fdm 6661 . . . . . . 7 (𝐵:𝑛𝐴 → dom 𝐵 = 𝑛)
43eqcomd 2735 . . . . . 6 (𝐵:𝑛𝐴𝑛 = dom 𝐵)
52, 4syl 17 . . . . 5 (𝐵 ∈ (𝐴m 𝑛) → 𝑛 = dom 𝐵)
65moimi 2538 . . . 4 (∃*𝑛 𝑛 = dom 𝐵 → ∃*𝑛 𝐵 ∈ (𝐴m 𝑛))
71, 6ax-mp 5 . . 3 ∃*𝑛 𝐵 ∈ (𝐴m 𝑛)
87moani 2546 . 2 ∃*𝑛(𝑛𝐶𝐵 ∈ (𝐴m 𝑛))
9 df-rmo 3343 . 2 (∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛) ↔ ∃*𝑛(𝑛𝐶𝐵 ∈ (𝐴m 𝑛)))
108, 9mpbir 231 1 ∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2531  ∃*wrmo 3342  dom cdm 5619  wf 6478  (class class class)co 7349  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3343  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator