![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunmapdisj | Structured version Visualization version GIF version |
Description: The union ∪ 𝑛 ∈ 𝐶(𝐴 ↑m 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
iunmapdisj | ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑m 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 3702 | . . . 4 ⊢ ∃*𝑛 𝑛 = dom 𝐵 | |
2 | elmapi 8839 | . . . . . 6 ⊢ (𝐵 ∈ (𝐴 ↑m 𝑛) → 𝐵:𝑛⟶𝐴) | |
3 | fdm 6723 | . . . . . . 7 ⊢ (𝐵:𝑛⟶𝐴 → dom 𝐵 = 𝑛) | |
4 | 3 | eqcomd 2738 | . . . . . 6 ⊢ (𝐵:𝑛⟶𝐴 → 𝑛 = dom 𝐵) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ (𝐴 ↑m 𝑛) → 𝑛 = dom 𝐵) |
6 | 5 | moimi 2539 | . . . 4 ⊢ (∃*𝑛 𝑛 = dom 𝐵 → ∃*𝑛 𝐵 ∈ (𝐴 ↑m 𝑛)) |
7 | 1, 6 | ax-mp 5 | . . 3 ⊢ ∃*𝑛 𝐵 ∈ (𝐴 ↑m 𝑛) |
8 | 7 | moani 2547 | . 2 ⊢ ∃*𝑛(𝑛 ∈ 𝐶 ∧ 𝐵 ∈ (𝐴 ↑m 𝑛)) |
9 | df-rmo 3376 | . 2 ⊢ (∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑m 𝑛) ↔ ∃*𝑛(𝑛 ∈ 𝐶 ∧ 𝐵 ∈ (𝐴 ↑m 𝑛))) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑m 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃*wmo 2532 ∃*wrmo 3375 dom cdm 5675 ⟶wf 6536 (class class class)co 7405 ↑m cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rmo 3376 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |