MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmapdisj Structured version   Visualization version   GIF version

Theorem iunmapdisj 9884
Description: The union 𝑛𝐶(𝐴m 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
iunmapdisj ∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛)
Distinct variable group:   𝐵,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑛)

Proof of Theorem iunmapdisj
StepHypRef Expression
1 moeq 3656 . . . 4 ∃*𝑛 𝑛 = dom 𝐵
2 elmapi 8712 . . . . . 6 (𝐵 ∈ (𝐴m 𝑛) → 𝐵:𝑛𝐴)
3 fdm 6664 . . . . . . 7 (𝐵:𝑛𝐴 → dom 𝐵 = 𝑛)
43eqcomd 2743 . . . . . 6 (𝐵:𝑛𝐴𝑛 = dom 𝐵)
52, 4syl 17 . . . . 5 (𝐵 ∈ (𝐴m 𝑛) → 𝑛 = dom 𝐵)
65moimi 2544 . . . 4 (∃*𝑛 𝑛 = dom 𝐵 → ∃*𝑛 𝐵 ∈ (𝐴m 𝑛))
71, 6ax-mp 5 . . 3 ∃*𝑛 𝐵 ∈ (𝐴m 𝑛)
87moani 2552 . 2 ∃*𝑛(𝑛𝐶𝐵 ∈ (𝐴m 𝑛))
9 df-rmo 3350 . 2 (∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛) ↔ ∃*𝑛(𝑛𝐶𝐵 ∈ (𝐴m 𝑛)))
108, 9mpbir 230 1 ∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1541  wcel 2106  ∃*wmo 2537  ∃*wrmo 3349  dom cdm 5624  wf 6479  (class class class)co 7341  m cmap 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rmo 3350  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-fv 6491  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7903  df-2nd 7904  df-map 8692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator