MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunmapdisj Structured version   Visualization version   GIF version

Theorem iunmapdisj 10044
Description: The union 𝑛𝐶(𝐴m 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
iunmapdisj ∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛)
Distinct variable group:   𝐵,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐶(𝑛)

Proof of Theorem iunmapdisj
StepHypRef Expression
1 moeq 3695 . . . 4 ∃*𝑛 𝑛 = dom 𝐵
2 elmapi 8864 . . . . . 6 (𝐵 ∈ (𝐴m 𝑛) → 𝐵:𝑛𝐴)
3 fdm 6725 . . . . . . 7 (𝐵:𝑛𝐴 → dom 𝐵 = 𝑛)
43eqcomd 2731 . . . . . 6 (𝐵:𝑛𝐴𝑛 = dom 𝐵)
52, 4syl 17 . . . . 5 (𝐵 ∈ (𝐴m 𝑛) → 𝑛 = dom 𝐵)
65moimi 2533 . . . 4 (∃*𝑛 𝑛 = dom 𝐵 → ∃*𝑛 𝐵 ∈ (𝐴m 𝑛))
71, 6ax-mp 5 . . 3 ∃*𝑛 𝐵 ∈ (𝐴m 𝑛)
87moani 2541 . 2 ∃*𝑛(𝑛𝐶𝐵 ∈ (𝐴m 𝑛))
9 df-rmo 3364 . 2 (∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛) ↔ ∃*𝑛(𝑛𝐶𝐵 ∈ (𝐴m 𝑛)))
108, 9mpbir 230 1 ∃*𝑛𝐶 𝐵 ∈ (𝐴m 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098  ∃*wmo 2526  ∃*wrmo 3363  dom cdm 5672  wf 6538  (class class class)co 7415  m cmap 8841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-rmo 3364  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7989  df-2nd 7990  df-map 8843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator