MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndconst Structured version   Visualization version   GIF version

Theorem 2ndconst 8104
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
2ndconst (š“ ∈ š‘‰ → (2nd ↾ ({š“} Ɨ šµ)):({š“} Ɨ šµ)–1-1-ontoā†’šµ)

Proof of Theorem 2ndconst
Dummy variables š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4779 . . 3 (š“ ∈ š‘‰ → {š“} ≠ āˆ…)
2 fo2ndres 8019 . . 3 ({š“} ≠ āˆ… → (2nd ↾ ({š“} Ɨ šµ)):({š“} Ɨ šµ)–ontoā†’šµ)
31, 2syl 17 . 2 (š“ ∈ š‘‰ → (2nd ↾ ({š“} Ɨ šµ)):({š“} Ɨ šµ)–ontoā†’šµ)
4 moeq 3700 . . . . . 6 ∃*š‘„ š‘„ = āŸØš“, š‘¦āŸ©
54moani 2541 . . . . 5 ∃*š‘„(š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)
6 vex 3467 . . . . . . . 8 š‘¦ ∈ V
76brresi 5993 . . . . . . 7 (š‘„(2nd ↾ ({š“} Ɨ šµ))š‘¦ ↔ (š‘„ ∈ ({š“} Ɨ šµ) ∧ š‘„2nd š‘¦))
8 fo2nd 8013 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 6810 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 2nd Fn V
11 vex 3467 . . . . . . . . . 10 š‘„ ∈ V
12 fnbrfvb 6947 . . . . . . . . . 10 ((2nd Fn V ∧ š‘„ ∈ V) → ((2nd ā€˜š‘„) = š‘¦ ↔ š‘„2nd š‘¦))
1310, 11, 12mp2an 690 . . . . . . . . 9 ((2nd ā€˜š‘„) = š‘¦ ↔ š‘„2nd š‘¦)
1413anbi2i 621 . . . . . . . 8 ((š‘„ ∈ ({š“} Ɨ šµ) ∧ (2nd ā€˜š‘„) = š‘¦) ↔ (š‘„ ∈ ({š“} Ɨ šµ) ∧ š‘„2nd š‘¦))
15 elxp7 8027 . . . . . . . . . . 11 (š‘„ ∈ ({š“} Ɨ šµ) ↔ (š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ {š“} ∧ (2nd ā€˜š‘„) ∈ šµ)))
16 eleq1 2813 . . . . . . . . . . . . . . 15 ((2nd ā€˜š‘„) = š‘¦ → ((2nd ā€˜š‘„) ∈ šµ ↔ š‘¦ ∈ šµ))
1716biimpac 477 . . . . . . . . . . . . . 14 (((2nd ā€˜š‘„) ∈ šµ ∧ (2nd ā€˜š‘„) = š‘¦) → š‘¦ ∈ šµ)
1817adantll 712 . . . . . . . . . . . . 13 ((((1st ā€˜š‘„) ∈ {š“} ∧ (2nd ā€˜š‘„) ∈ šµ) ∧ (2nd ā€˜š‘„) = š‘¦) → š‘¦ ∈ šµ)
1918adantll 712 . . . . . . . . . . . 12 (((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ {š“} ∧ (2nd ā€˜š‘„) ∈ šµ)) ∧ (2nd ā€˜š‘„) = š‘¦) → š‘¦ ∈ šµ)
20 elsni 4646 . . . . . . . . . . . . . 14 ((1st ā€˜š‘„) ∈ {š“} → (1st ā€˜š‘„) = š“)
21 eqopi 8028 . . . . . . . . . . . . . . 15 ((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) = š“ ∧ (2nd ā€˜š‘„) = š‘¦)) → š‘„ = āŸØš“, š‘¦āŸ©)
2221anassrs 466 . . . . . . . . . . . . . 14 (((š‘„ ∈ (V Ɨ V) ∧ (1st ā€˜š‘„) = š“) ∧ (2nd ā€˜š‘„) = š‘¦) → š‘„ = āŸØš“, š‘¦āŸ©)
2320, 22sylanl2 679 . . . . . . . . . . . . 13 (((š‘„ ∈ (V Ɨ V) ∧ (1st ā€˜š‘„) ∈ {š“}) ∧ (2nd ā€˜š‘„) = š‘¦) → š‘„ = āŸØš“, š‘¦āŸ©)
2423adantlrr 719 . . . . . . . . . . . 12 (((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ {š“} ∧ (2nd ā€˜š‘„) ∈ šµ)) ∧ (2nd ā€˜š‘„) = š‘¦) → š‘„ = āŸØš“, š‘¦āŸ©)
2519, 24jca 510 . . . . . . . . . . 11 (((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ {š“} ∧ (2nd ā€˜š‘„) ∈ šµ)) ∧ (2nd ā€˜š‘„) = š‘¦) → (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©))
2615, 25sylanb 579 . . . . . . . . . 10 ((š‘„ ∈ ({š“} Ɨ šµ) ∧ (2nd ā€˜š‘„) = š‘¦) → (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©))
2726adantl 480 . . . . . . . . 9 ((š“ ∈ š‘‰ ∧ (š‘„ ∈ ({š“} Ɨ šµ) ∧ (2nd ā€˜š‘„) = š‘¦)) → (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©))
28 simprr 771 . . . . . . . . . . 11 ((š“ ∈ š‘‰ ∧ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)) → š‘„ = āŸØš“, š‘¦āŸ©)
29 snidg 4663 . . . . . . . . . . . . 13 (š“ ∈ š‘‰ → š“ ∈ {š“})
3029adantr 479 . . . . . . . . . . . 12 ((š“ ∈ š‘‰ ∧ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)) → š“ ∈ {š“})
31 simprl 769 . . . . . . . . . . . 12 ((š“ ∈ š‘‰ ∧ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)) → š‘¦ ∈ šµ)
3230, 31opelxpd 5716 . . . . . . . . . . 11 ((š“ ∈ š‘‰ ∧ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)) → āŸØš“, š‘¦āŸ© ∈ ({š“} Ɨ šµ))
3328, 32eqeltrd 2825 . . . . . . . . . 10 ((š“ ∈ š‘‰ ∧ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)) → š‘„ ∈ ({š“} Ɨ šµ))
34 fveq2 6894 . . . . . . . . . . . 12 (š‘„ = āŸØš“, š‘¦āŸ© → (2nd ā€˜š‘„) = (2nd ā€˜āŸØš“, š‘¦āŸ©))
35 op2ndg 8005 . . . . . . . . . . . . 13 ((š“ ∈ š‘‰ ∧ š‘¦ ∈ V) → (2nd ā€˜āŸØš“, š‘¦āŸ©) = š‘¦)
3635elvd 3470 . . . . . . . . . . . 12 (š“ ∈ š‘‰ → (2nd ā€˜āŸØš“, š‘¦āŸ©) = š‘¦)
3734, 36sylan9eqr 2787 . . . . . . . . . . 11 ((š“ ∈ š‘‰ ∧ š‘„ = āŸØš“, š‘¦āŸ©) → (2nd ā€˜š‘„) = š‘¦)
3837adantrl 714 . . . . . . . . . 10 ((š“ ∈ š‘‰ ∧ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)) → (2nd ā€˜š‘„) = š‘¦)
3933, 38jca 510 . . . . . . . . 9 ((š“ ∈ š‘‰ ∧ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)) → (š‘„ ∈ ({š“} Ɨ šµ) ∧ (2nd ā€˜š‘„) = š‘¦))
4027, 39impbida 799 . . . . . . . 8 (š“ ∈ š‘‰ → ((š‘„ ∈ ({š“} Ɨ šµ) ∧ (2nd ā€˜š‘„) = š‘¦) ↔ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)))
4114, 40bitr3id 284 . . . . . . 7 (š“ ∈ š‘‰ → ((š‘„ ∈ ({š“} Ɨ šµ) ∧ š‘„2nd š‘¦) ↔ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)))
427, 41bitrid 282 . . . . . 6 (š“ ∈ š‘‰ → (š‘„(2nd ↾ ({š“} Ɨ šµ))š‘¦ ↔ (š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)))
4342mobidv 2537 . . . . 5 (š“ ∈ š‘‰ → (∃*š‘„ š‘„(2nd ↾ ({š“} Ɨ šµ))š‘¦ ↔ ∃*š‘„(š‘¦ ∈ šµ ∧ š‘„ = āŸØš“, š‘¦āŸ©)))
445, 43mpbiri 257 . . . 4 (š“ ∈ š‘‰ → ∃*š‘„ š‘„(2nd ↾ ({š“} Ɨ šµ))š‘¦)
4544alrimiv 1922 . . 3 (š“ ∈ š‘‰ → āˆ€š‘¦āˆƒ*š‘„ š‘„(2nd ↾ ({š“} Ɨ šµ))š‘¦)
46 funcnv2 6620 . . 3 (Fun ā—”(2nd ↾ ({š“} Ɨ šµ)) ↔ āˆ€š‘¦āˆƒ*š‘„ š‘„(2nd ↾ ({š“} Ɨ šµ))š‘¦)
4745, 46sylibr 233 . 2 (š“ ∈ š‘‰ → Fun ā—”(2nd ↾ ({š“} Ɨ šµ)))
48 dff1o3 6842 . 2 ((2nd ↾ ({š“} Ɨ šµ)):({š“} Ɨ šµ)–1-1-ontoā†’šµ ↔ ((2nd ↾ ({š“} Ɨ šµ)):({š“} Ɨ šµ)–ontoā†’šµ ∧ Fun ā—”(2nd ↾ ({š“} Ɨ šµ))))
493, 47, 48sylanbrc 581 1 (š“ ∈ š‘‰ → (2nd ↾ ({š“} Ɨ šµ)):({š“} Ɨ šµ)–1-1-ontoā†’šµ)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 394  āˆ€wal 1531   = wceq 1533   ∈ wcel 2098  āˆƒ*wmo 2526   ≠ wne 2930  Vcvv 3463  āˆ…c0 4323  {csn 4629  āŸØcop 4635   class class class wbr 5148   Ɨ cxp 5675  ā—”ccnv 5676   ↾ cres 5679  Fun wfun 6541   Fn wfn 6542  ā€“onto→wfo 6545  ā€“1-1-onto→wf1o 6546  ā€˜cfv 6547  1st c1st 7990  2nd c2nd 7991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-1st 7992  df-2nd 7993
This theorem is referenced by:  curry1  8107  xpfiOLD  9342  fsum2dlem  15748  fprod2dlem  15956  gsum2dlem2  19930  ovoliunlem1  25461  gsummpt2d  32820  fv2ndcnv  35443
  Copyright terms: Public domain W3C validator