MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndconst Structured version   Visualization version   GIF version

Theorem 2ndconst 7535
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
2ndconst (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)

Proof of Theorem 2ndconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4529 . . 3 (𝐴𝑉 → {𝐴} ≠ ∅)
2 fo2ndres 7460 . . 3 ({𝐴} ≠ ∅ → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
31, 2syl 17 . 2 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
4 moeq 3601 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝐴, 𝑦
54moani 2622 . . . . 5 ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)
6 vex 3417 . . . . . . . 8 𝑦 ∈ V
76brresi 5642 . . . . . . 7 (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦))
8 fo2nd 7454 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 6359 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 2nd Fn V
11 vex 3417 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 6486 . . . . . . . . . 10 ((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd𝑥) = 𝑦𝑥2nd 𝑦))
1310, 11, 12mp2an 683 . . . . . . . . 9 ((2nd𝑥) = 𝑦𝑥2nd 𝑦)
1413anbi2i 616 . . . . . . . 8 ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦))
15 elxp7 7468 . . . . . . . . . . 11 (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)))
16 eleq1 2894 . . . . . . . . . . . . . . 15 ((2nd𝑥) = 𝑦 → ((2nd𝑥) ∈ 𝐵𝑦𝐵))
1716biimpac 472 . . . . . . . . . . . . . 14 (((2nd𝑥) ∈ 𝐵 ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
1817adantll 705 . . . . . . . . . . . . 13 ((((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵) ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
1918adantll 705 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
20 elsni 4416 . . . . . . . . . . . . . 14 ((1st𝑥) ∈ {𝐴} → (1st𝑥) = 𝐴)
21 eqopi 7469 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝐴 ∧ (2nd𝑥) = 𝑦)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2221anassrs 461 . . . . . . . . . . . . . 14 (((𝑥 ∈ (V × V) ∧ (1st𝑥) = 𝐴) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2320, 22sylanl2 671 . . . . . . . . . . . . 13 (((𝑥 ∈ (V × V) ∧ (1st𝑥) ∈ {𝐴}) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2423adantlrr 712 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2519, 24jca 507 . . . . . . . . . . 11 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2615, 25sylanb 576 . . . . . . . . . 10 ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2726adantl 475 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦)) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
28 simprr 789 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 = ⟨𝐴, 𝑦⟩)
29 snidg 4429 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 ∈ {𝐴})
3029adantr 474 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝐴 ∈ {𝐴})
31 simprl 787 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑦𝐵)
3230, 31opelxpd 5384 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
3328, 32eqeltrd 2906 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 ∈ ({𝐴} × 𝐵))
34 fveq2 6437 . . . . . . . . . . . 12 (𝑥 = ⟨𝐴, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝑦⟩))
35 op2ndg 7446 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ V) → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3635elvd 3419 . . . . . . . . . . . 12 (𝐴𝑉 → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3734, 36sylan9eqr 2883 . . . . . . . . . . 11 ((𝐴𝑉𝑥 = ⟨𝐴, 𝑦⟩) → (2nd𝑥) = 𝑦)
3837adantrl 707 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (2nd𝑥) = 𝑦)
3933, 38jca 507 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦))
4027, 39impbida 835 . . . . . . . 8 (𝐴𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4114, 40syl5bbr 277 . . . . . . 7 (𝐴𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
427, 41syl5bb 275 . . . . . 6 (𝐴𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4342mobidv 2617 . . . . 5 (𝐴𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
445, 43mpbiri 250 . . . 4 (𝐴𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4544alrimiv 2026 . . 3 (𝐴𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
46 funcnv2 6194 . . 3 (Fun (2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4745, 46sylibr 226 . 2 (𝐴𝑉 → Fun (2nd ↾ ({𝐴} × 𝐵)))
48 dff1o3 6388 . 2 ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵 ↔ ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵 ∧ Fun (2nd ↾ ({𝐴} × 𝐵))))
493, 47, 48sylanbrc 578 1 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1654   = wceq 1656  wcel 2164  ∃*wmo 2603  wne 2999  Vcvv 3414  c0 4146  {csn 4399  cop 4405   class class class wbr 4875   × cxp 5344  ccnv 5345  cres 5348  Fun wfun 6121   Fn wfn 6122  ontowfo 6125  1-1-ontowf1o 6126  cfv 6127  1st c1st 7431  2nd c2nd 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-1st 7433  df-2nd 7434
This theorem is referenced by:  curry1  7538  xpfi  8506  fsum2dlem  14883  fprod2dlem  15090  gsum2dlem2  18730  ovoliunlem1  23675  gsummpt2d  30322  fv2ndcnv  32214
  Copyright terms: Public domain W3C validator