MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndconst Structured version   Visualization version   GIF version

Theorem 2ndconst 8057
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
2ndconst (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)

Proof of Theorem 2ndconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4734 . . 3 (𝐴𝑉 → {𝐴} ≠ ∅)
2 fo2ndres 7974 . . 3 ({𝐴} ≠ ∅ → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
31, 2syl 17 . 2 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
4 moeq 3675 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝐴, 𝑦
54moani 2546 . . . . 5 ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)
6 vex 3448 . . . . . . . 8 𝑦 ∈ V
76brresi 5948 . . . . . . 7 (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦))
8 fo2nd 7968 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 6756 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 2nd Fn V
11 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 6893 . . . . . . . . . 10 ((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd𝑥) = 𝑦𝑥2nd 𝑦))
1310, 11, 12mp2an 692 . . . . . . . . 9 ((2nd𝑥) = 𝑦𝑥2nd 𝑦)
1413anbi2i 623 . . . . . . . 8 ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦))
15 elxp7 7982 . . . . . . . . . . 11 (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)))
16 eleq1 2816 . . . . . . . . . . . . . . 15 ((2nd𝑥) = 𝑦 → ((2nd𝑥) ∈ 𝐵𝑦𝐵))
1716biimpac 478 . . . . . . . . . . . . . 14 (((2nd𝑥) ∈ 𝐵 ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
1817adantll 714 . . . . . . . . . . . . 13 ((((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵) ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
1918adantll 714 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
20 elsni 4602 . . . . . . . . . . . . . 14 ((1st𝑥) ∈ {𝐴} → (1st𝑥) = 𝐴)
21 eqopi 7983 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝐴 ∧ (2nd𝑥) = 𝑦)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2221anassrs 467 . . . . . . . . . . . . . 14 (((𝑥 ∈ (V × V) ∧ (1st𝑥) = 𝐴) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2320, 22sylanl2 681 . . . . . . . . . . . . 13 (((𝑥 ∈ (V × V) ∧ (1st𝑥) ∈ {𝐴}) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2423adantlrr 721 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2519, 24jca 511 . . . . . . . . . . 11 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2615, 25sylanb 581 . . . . . . . . . 10 ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2726adantl 481 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦)) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
28 simprr 772 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 = ⟨𝐴, 𝑦⟩)
29 snidg 4620 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 ∈ {𝐴})
3029adantr 480 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝐴 ∈ {𝐴})
31 simprl 770 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑦𝐵)
3230, 31opelxpd 5670 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
3328, 32eqeltrd 2828 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 ∈ ({𝐴} × 𝐵))
34 fveq2 6840 . . . . . . . . . . . 12 (𝑥 = ⟨𝐴, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝑦⟩))
35 op2ndg 7960 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ V) → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3635elvd 3450 . . . . . . . . . . . 12 (𝐴𝑉 → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3734, 36sylan9eqr 2786 . . . . . . . . . . 11 ((𝐴𝑉𝑥 = ⟨𝐴, 𝑦⟩) → (2nd𝑥) = 𝑦)
3837adantrl 716 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (2nd𝑥) = 𝑦)
3933, 38jca 511 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦))
4027, 39impbida 800 . . . . . . . 8 (𝐴𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4114, 40bitr3id 285 . . . . . . 7 (𝐴𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
427, 41bitrid 283 . . . . . 6 (𝐴𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4342mobidv 2542 . . . . 5 (𝐴𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
445, 43mpbiri 258 . . . 4 (𝐴𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4544alrimiv 1927 . . 3 (𝐴𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
46 funcnv2 6568 . . 3 (Fun (2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4745, 46sylibr 234 . 2 (𝐴𝑉 → Fun (2nd ↾ ({𝐴} × 𝐵)))
48 dff1o3 6788 . 2 ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵 ↔ ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵 ∧ Fun (2nd ↾ ({𝐴} × 𝐵))))
493, 47, 48sylanbrc 583 1 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2531  wne 2925  Vcvv 3444  c0 4292  {csn 4585  cop 4591   class class class wbr 5102   × cxp 5629  ccnv 5630  cres 5633  Fun wfun 6493   Fn wfn 6494  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  1st c1st 7945  2nd c2nd 7946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1st 7947  df-2nd 7948
This theorem is referenced by:  curry1  8060  xpfiOLD  9246  fsum2dlem  15712  fprod2dlem  15922  gsum2dlem2  19885  ovoliunlem1  25436  gsummpt2d  33032  fv2ndcnv  35758
  Copyright terms: Public domain W3C validator