MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndconst Structured version   Visualization version   GIF version

Theorem 2ndconst 8031
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
2ndconst (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)

Proof of Theorem 2ndconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4724 . . 3 (𝐴𝑉 → {𝐴} ≠ ∅)
2 fo2ndres 7948 . . 3 ({𝐴} ≠ ∅ → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
31, 2syl 17 . 2 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵)
4 moeq 3661 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝐴, 𝑦
54moani 2548 . . . . 5 ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)
6 vex 3440 . . . . . . . 8 𝑦 ∈ V
76brresi 5936 . . . . . . 7 (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦))
8 fo2nd 7942 . . . . . . . . . . 11 2nd :V–onto→V
9 fofn 6737 . . . . . . . . . . 11 (2nd :V–onto→V → 2nd Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 2nd Fn V
11 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 6872 . . . . . . . . . 10 ((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd𝑥) = 𝑦𝑥2nd 𝑦))
1310, 11, 12mp2an 692 . . . . . . . . 9 ((2nd𝑥) = 𝑦𝑥2nd 𝑦)
1413anbi2i 623 . . . . . . . 8 ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦))
15 elxp7 7956 . . . . . . . . . . 11 (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)))
16 eleq1 2819 . . . . . . . . . . . . . . 15 ((2nd𝑥) = 𝑦 → ((2nd𝑥) ∈ 𝐵𝑦𝐵))
1716biimpac 478 . . . . . . . . . . . . . 14 (((2nd𝑥) ∈ 𝐵 ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
1817adantll 714 . . . . . . . . . . . . 13 ((((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵) ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
1918adantll 714 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → 𝑦𝐵)
20 elsni 4590 . . . . . . . . . . . . . 14 ((1st𝑥) ∈ {𝐴} → (1st𝑥) = 𝐴)
21 eqopi 7957 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝐴 ∧ (2nd𝑥) = 𝑦)) → 𝑥 = ⟨𝐴, 𝑦⟩)
2221anassrs 467 . . . . . . . . . . . . . 14 (((𝑥 ∈ (V × V) ∧ (1st𝑥) = 𝐴) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2320, 22sylanl2 681 . . . . . . . . . . . . 13 (((𝑥 ∈ (V × V) ∧ (1st𝑥) ∈ {𝐴}) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2423adantlrr 721 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → 𝑥 = ⟨𝐴, 𝑦⟩)
2519, 24jca 511 . . . . . . . . . . 11 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ {𝐴} ∧ (2nd𝑥) ∈ 𝐵)) ∧ (2nd𝑥) = 𝑦) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2615, 25sylanb 581 . . . . . . . . . 10 ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
2726adantl 481 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦)) → (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩))
28 simprr 772 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 = ⟨𝐴, 𝑦⟩)
29 snidg 4610 . . . . . . . . . . . . 13 (𝐴𝑉𝐴 ∈ {𝐴})
3029adantr 480 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝐴 ∈ {𝐴})
31 simprl 770 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑦𝐵)
3230, 31opelxpd 5653 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → ⟨𝐴, 𝑦⟩ ∈ ({𝐴} × 𝐵))
3328, 32eqeltrd 2831 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → 𝑥 ∈ ({𝐴} × 𝐵))
34 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = ⟨𝐴, 𝑦⟩ → (2nd𝑥) = (2nd ‘⟨𝐴, 𝑦⟩))
35 op2ndg 7934 . . . . . . . . . . . . 13 ((𝐴𝑉𝑦 ∈ V) → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3635elvd 3442 . . . . . . . . . . . 12 (𝐴𝑉 → (2nd ‘⟨𝐴, 𝑦⟩) = 𝑦)
3734, 36sylan9eqr 2788 . . . . . . . . . . 11 ((𝐴𝑉𝑥 = ⟨𝐴, 𝑦⟩) → (2nd𝑥) = 𝑦)
3837adantrl 716 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (2nd𝑥) = 𝑦)
3933, 38jca 511 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)) → (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦))
4027, 39impbida 800 . . . . . . . 8 (𝐴𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd𝑥) = 𝑦) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4114, 40bitr3id 285 . . . . . . 7 (𝐴𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦) ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
427, 41bitrid 283 . . . . . 6 (𝐴𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
4342mobidv 2544 . . . . 5 (𝐴𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦𝐵𝑥 = ⟨𝐴, 𝑦⟩)))
445, 43mpbiri 258 . . . 4 (𝐴𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4544alrimiv 1928 . . 3 (𝐴𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
46 funcnv2 6549 . . 3 (Fun (2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦)
4745, 46sylibr 234 . 2 (𝐴𝑉 → Fun (2nd ↾ ({𝐴} × 𝐵)))
48 dff1o3 6769 . 2 ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵 ↔ ((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto𝐵 ∧ Fun (2nd ↾ ({𝐴} × 𝐵))))
493, 47, 48sylanbrc 583 1 (𝐴𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  ∃*wmo 2533  wne 2928  Vcvv 3436  c0 4280  {csn 4573  cop 4579   class class class wbr 5089   × cxp 5612  ccnv 5613  cres 5616  Fun wfun 6475   Fn wfn 6476  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  curry1  8034  fsum2dlem  15677  fprod2dlem  15887  gsum2dlem2  19883  ovoliunlem1  25430  gsummpt2d  33029  fv2ndcnv  35822
  Copyright terms: Public domain W3C validator