| Step | Hyp | Ref
| Expression |
| 1 | | snnzg 4773 |
. . 3
⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
| 2 | | fo2ndres 8042 |
. . 3
⊢ ({𝐴} ≠ ∅ →
(2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto→𝐵) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto→𝐵) |
| 4 | | moeq 3712 |
. . . . . 6
⊢
∃*𝑥 𝑥 = 〈𝐴, 𝑦〉 |
| 5 | 4 | moani 2552 |
. . . . 5
⊢
∃*𝑥(𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉) |
| 6 | | vex 3483 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 7 | 6 | brresi 6005 |
. . . . . . 7
⊢ (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦)) |
| 8 | | fo2nd 8036 |
. . . . . . . . . . 11
⊢
2nd :V–onto→V |
| 9 | | fofn 6821 |
. . . . . . . . . . 11
⊢
(2nd :V–onto→V → 2nd Fn V) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . . . . 10
⊢
2nd Fn V |
| 11 | | vex 3483 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 12 | | fnbrfvb 6958 |
. . . . . . . . . 10
⊢
((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd
‘𝑥) = 𝑦 ↔ 𝑥2nd 𝑦)) |
| 13 | 10, 11, 12 | mp2an 692 |
. . . . . . . . 9
⊢
((2nd ‘𝑥) = 𝑦 ↔ 𝑥2nd 𝑦) |
| 14 | 13 | anbi2i 623 |
. . . . . . . 8
⊢ ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦) ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦)) |
| 15 | | elxp7 8050 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st
‘𝑥) ∈ {𝐴} ∧ (2nd
‘𝑥) ∈ 𝐵))) |
| 16 | | eleq1 2828 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘𝑥) = 𝑦 → ((2nd ‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
| 17 | 16 | biimpac 478 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑥) ∈ 𝐵 ∧ (2nd ‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
| 18 | 17 | adantll 714 |
. . . . . . . . . . . . 13
⊢
((((1st ‘𝑥) ∈ {𝐴} ∧ (2nd ‘𝑥) ∈ 𝐵) ∧ (2nd ‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
| 19 | 18 | adantll 714 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ {𝐴} ∧
(2nd ‘𝑥)
∈ 𝐵)) ∧
(2nd ‘𝑥) =
𝑦) → 𝑦 ∈ 𝐵) |
| 20 | | elsni 4642 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑥) ∈ {𝐴} → (1st ‘𝑥) = 𝐴) |
| 21 | | eqopi 8051 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
= 𝐴 ∧ (2nd
‘𝑥) = 𝑦)) → 𝑥 = 〈𝐴, 𝑦〉) |
| 22 | 21 | anassrs 467 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (V × V) ∧
(1st ‘𝑥) =
𝐴) ∧ (2nd
‘𝑥) = 𝑦) → 𝑥 = 〈𝐴, 𝑦〉) |
| 23 | 20, 22 | sylanl2 681 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (V × V) ∧
(1st ‘𝑥)
∈ {𝐴}) ∧
(2nd ‘𝑥) =
𝑦) → 𝑥 = 〈𝐴, 𝑦〉) |
| 24 | 23 | adantlrr 721 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ {𝐴} ∧
(2nd ‘𝑥)
∈ 𝐵)) ∧
(2nd ‘𝑥) =
𝑦) → 𝑥 = 〈𝐴, 𝑦〉) |
| 25 | 19, 24 | jca 511 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ {𝐴} ∧
(2nd ‘𝑥)
∈ 𝐵)) ∧
(2nd ‘𝑥) =
𝑦) → (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) |
| 26 | 15, 25 | sylanb 581 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦) → (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) |
| 27 | 26 | adantl 481 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦)) → (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) |
| 28 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 𝑥 = 〈𝐴, 𝑦〉) |
| 29 | | snidg 4659 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
| 30 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 𝐴 ∈ {𝐴}) |
| 31 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 𝑦 ∈ 𝐵) |
| 32 | 30, 31 | opelxpd 5723 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 〈𝐴, 𝑦〉 ∈ ({𝐴} × 𝐵)) |
| 33 | 28, 32 | eqeltrd 2840 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 𝑥 ∈ ({𝐴} × 𝐵)) |
| 34 | | fveq2 6905 |
. . . . . . . . . . . 12
⊢ (𝑥 = 〈𝐴, 𝑦〉 → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝑦〉)) |
| 35 | | op2ndg 8028 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (2nd
‘〈𝐴, 𝑦〉) = 𝑦) |
| 36 | 35 | elvd 3485 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → (2nd ‘〈𝐴, 𝑦〉) = 𝑦) |
| 37 | 34, 36 | sylan9eqr 2798 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = 〈𝐴, 𝑦〉) → (2nd ‘𝑥) = 𝑦) |
| 38 | 37 | adantrl 716 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → (2nd ‘𝑥) = 𝑦) |
| 39 | 33, 38 | jca 511 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦)) |
| 40 | 27, 39 | impbida 800 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉))) |
| 41 | 14, 40 | bitr3id 285 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉))) |
| 42 | 7, 41 | bitrid 283 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉))) |
| 43 | 42 | mobidv 2548 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉))) |
| 44 | 5, 43 | mpbiri 258 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦) |
| 45 | 44 | alrimiv 1926 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦) |
| 46 | | funcnv2 6633 |
. . 3
⊢ (Fun
◡(2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦) |
| 47 | 45, 46 | sylibr 234 |
. 2
⊢ (𝐴 ∈ 𝑉 → Fun ◡(2nd ↾ ({𝐴} × 𝐵))) |
| 48 | | dff1o3 6853 |
. 2
⊢
((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto→𝐵 ↔ ((2nd ↾
({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto→𝐵 ∧ Fun ◡(2nd ↾ ({𝐴} × 𝐵)))) |
| 49 | 3, 47, 48 | sylanbrc 583 |
1
⊢ (𝐴 ∈ 𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto→𝐵) |