Step | Hyp | Ref
| Expression |
1 | | snnzg 4667 |
. . 3
⊢ (𝐴 ∈ 𝑉 → {𝐴} ≠ ∅) |
2 | | fo2ndres 7720 |
. . 3
⊢ ({𝐴} ≠ ∅ →
(2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto→𝐵) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto→𝐵) |
4 | | moeq 3621 |
. . . . . 6
⊢
∃*𝑥 𝑥 = 〈𝐴, 𝑦〉 |
5 | 4 | moani 2571 |
. . . . 5
⊢
∃*𝑥(𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉) |
6 | | vex 3413 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
7 | 6 | brresi 5832 |
. . . . . . 7
⊢ (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦)) |
8 | | fo2nd 7714 |
. . . . . . . . . . 11
⊢
2nd :V–onto→V |
9 | | fofn 6578 |
. . . . . . . . . . 11
⊢
(2nd :V–onto→V → 2nd Fn V) |
10 | 8, 9 | ax-mp 5 |
. . . . . . . . . 10
⊢
2nd Fn V |
11 | | vex 3413 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
12 | | fnbrfvb 6706 |
. . . . . . . . . 10
⊢
((2nd Fn V ∧ 𝑥 ∈ V) → ((2nd
‘𝑥) = 𝑦 ↔ 𝑥2nd 𝑦)) |
13 | 10, 11, 12 | mp2an 691 |
. . . . . . . . 9
⊢
((2nd ‘𝑥) = 𝑦 ↔ 𝑥2nd 𝑦) |
14 | 13 | anbi2i 625 |
. . . . . . . 8
⊢ ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦) ↔ (𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦)) |
15 | | elxp7 7728 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ({𝐴} × 𝐵) ↔ (𝑥 ∈ (V × V) ∧ ((1st
‘𝑥) ∈ {𝐴} ∧ (2nd
‘𝑥) ∈ 𝐵))) |
16 | | eleq1 2839 |
. . . . . . . . . . . . . . 15
⊢
((2nd ‘𝑥) = 𝑦 → ((2nd ‘𝑥) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
17 | 16 | biimpac 482 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑥) ∈ 𝐵 ∧ (2nd ‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
18 | 17 | adantll 713 |
. . . . . . . . . . . . 13
⊢
((((1st ‘𝑥) ∈ {𝐴} ∧ (2nd ‘𝑥) ∈ 𝐵) ∧ (2nd ‘𝑥) = 𝑦) → 𝑦 ∈ 𝐵) |
19 | 18 | adantll 713 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ {𝐴} ∧
(2nd ‘𝑥)
∈ 𝐵)) ∧
(2nd ‘𝑥) =
𝑦) → 𝑦 ∈ 𝐵) |
20 | | elsni 4539 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑥) ∈ {𝐴} → (1st ‘𝑥) = 𝐴) |
21 | | eqopi 7729 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
= 𝐴 ∧ (2nd
‘𝑥) = 𝑦)) → 𝑥 = 〈𝐴, 𝑦〉) |
22 | 21 | anassrs 471 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (V × V) ∧
(1st ‘𝑥) =
𝐴) ∧ (2nd
‘𝑥) = 𝑦) → 𝑥 = 〈𝐴, 𝑦〉) |
23 | 20, 22 | sylanl2 680 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (V × V) ∧
(1st ‘𝑥)
∈ {𝐴}) ∧
(2nd ‘𝑥) =
𝑦) → 𝑥 = 〈𝐴, 𝑦〉) |
24 | 23 | adantlrr 720 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ {𝐴} ∧
(2nd ‘𝑥)
∈ 𝐵)) ∧
(2nd ‘𝑥) =
𝑦) → 𝑥 = 〈𝐴, 𝑦〉) |
25 | 19, 24 | jca 515 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ {𝐴} ∧
(2nd ‘𝑥)
∈ 𝐵)) ∧
(2nd ‘𝑥) =
𝑦) → (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) |
26 | 15, 25 | sylanb 584 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦) → (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) |
27 | 26 | adantl 485 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦)) → (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) |
28 | | simprr 772 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 𝑥 = 〈𝐴, 𝑦〉) |
29 | | snidg 4556 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
30 | 29 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 𝐴 ∈ {𝐴}) |
31 | | simprl 770 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 𝑦 ∈ 𝐵) |
32 | 30, 31 | opelxpd 5562 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 〈𝐴, 𝑦〉 ∈ ({𝐴} × 𝐵)) |
33 | 28, 32 | eqeltrd 2852 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → 𝑥 ∈ ({𝐴} × 𝐵)) |
34 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑥 = 〈𝐴, 𝑦〉 → (2nd ‘𝑥) = (2nd
‘〈𝐴, 𝑦〉)) |
35 | | op2ndg 7706 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V) → (2nd
‘〈𝐴, 𝑦〉) = 𝑦) |
36 | 35 | elvd 3416 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ 𝑉 → (2nd ‘〈𝐴, 𝑦〉) = 𝑦) |
37 | 34, 36 | sylan9eqr 2815 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = 〈𝐴, 𝑦〉) → (2nd ‘𝑥) = 𝑦) |
38 | 37 | adantrl 715 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → (2nd ‘𝑥) = 𝑦) |
39 | 33, 38 | jca 515 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉)) → (𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦)) |
40 | 27, 39 | impbida 800 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ (2nd ‘𝑥) = 𝑦) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉))) |
41 | 14, 40 | bitr3id 288 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ ({𝐴} × 𝐵) ∧ 𝑥2nd 𝑦) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉))) |
42 | 7, 41 | syl5bb 286 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉))) |
43 | 42 | mobidv 2567 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦 ↔ ∃*𝑥(𝑦 ∈ 𝐵 ∧ 𝑥 = 〈𝐴, 𝑦〉))) |
44 | 5, 43 | mpbiri 261 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦) |
45 | 44 | alrimiv 1928 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦) |
46 | | funcnv2 6403 |
. . 3
⊢ (Fun
◡(2nd ↾ ({𝐴} × 𝐵)) ↔ ∀𝑦∃*𝑥 𝑥(2nd ↾ ({𝐴} × 𝐵))𝑦) |
47 | 45, 46 | sylibr 237 |
. 2
⊢ (𝐴 ∈ 𝑉 → Fun ◡(2nd ↾ ({𝐴} × 𝐵))) |
48 | | dff1o3 6608 |
. 2
⊢
((2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto→𝐵 ↔ ((2nd ↾
({𝐴} × 𝐵)):({𝐴} × 𝐵)–onto→𝐵 ∧ Fun ◡(2nd ↾ ({𝐴} × 𝐵)))) |
49 | 3, 47, 48 | sylanbrc 586 |
1
⊢ (𝐴 ∈ 𝑉 → (2nd ↾ ({𝐴} × 𝐵)):({𝐴} × 𝐵)–1-1-onto→𝐵) |