MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfir Structured version   Visualization version   GIF version

Theorem pwfir 9212
Description: If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
pwfir (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)

Proof of Theorem pwfir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5634 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) = ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵)
2 relopab 5770 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
3 dmopabss 5864 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ⊆ 𝒫 𝐵
4 relssres 5978 . . . . 5 ((Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ⊆ 𝒫 𝐵) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)})
52, 3, 4mp2an 692 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
65rneqi 5883 . . 3 ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
7 rnopab 5900 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
8 eleq1 2821 . . . . . . . . 9 ({𝑦} = 𝑥 → ({𝑦} ∈ 𝒫 𝐵𝑥 ∈ 𝒫 𝐵))
98biimparc 479 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → {𝑦} ∈ 𝒫 𝐵)
10 vex 3441 . . . . . . . . 9 𝑦 ∈ V
1110snelpw 5390 . . . . . . . 8 (𝑦𝐵 ↔ {𝑦} ∈ 𝒫 𝐵)
129, 11sylibr 234 . . . . . . 7 ((𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → 𝑦𝐵)
1312exlimiv 1931 . . . . . 6 (∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → 𝑦𝐵)
14 snelpwi 5389 . . . . . . . 8 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐵)
15 eqid 2733 . . . . . . . 8 {𝑦} = {𝑦}
16 eqeq2 2745 . . . . . . . . 9 (𝑥 = {𝑦} → ({𝑦} = 𝑥 ↔ {𝑦} = {𝑦}))
1716rspcev 3573 . . . . . . . 8 (({𝑦} ∈ 𝒫 𝐵 ∧ {𝑦} = {𝑦}) → ∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥)
1814, 15, 17sylancl 586 . . . . . . 7 (𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥)
19 df-rex 3058 . . . . . . 7 (∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
2018, 19sylib 218 . . . . . 6 (𝑦𝐵 → ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
2113, 20impbii 209 . . . . 5 (∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) ↔ 𝑦𝐵)
2221abbii 2800 . . . 4 {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = {𝑦𝑦𝐵}
23 abid2 2870 . . . 4 {𝑦𝑦𝐵} = 𝐵
247, 22, 233eqtri 2760 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = 𝐵
251, 6, 243eqtri 2760 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) = 𝐵
26 funopab 6524 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
27 mosneq 4795 . . . . 5 ∃*𝑦{𝑦} = 𝑥
2827moani 2550 . . . 4 ∃*𝑦(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)
2926, 28mpgbir 1800 . . 3 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
30 imafi 9210 . . 3 ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ∧ 𝒫 𝐵 ∈ Fin) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) ∈ Fin)
3129, 30mpan 690 . 2 (𝒫 𝐵 ∈ Fin → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) ∈ Fin)
3225, 31eqeltrrid 2838 1 (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  ∃*wmo 2535  {cab 2711  wrex 3057  wss 3898  𝒫 cpw 4551  {csn 4577  {copab 5157  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  Rel wrel 5626  Fun wfun 6483  Fincfn 8879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-1o 8394  df-en 8880  df-dom 8881  df-fin 8883
This theorem is referenced by:  pwfi  9214  r1omfi  35188
  Copyright terms: Public domain W3C validator