MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfir Structured version   Visualization version   GIF version

Theorem pwfir 8959
Description: If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
pwfir (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)

Proof of Theorem pwfir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5602 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) = ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵)
2 relopab 5734 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
3 dmopabss 5827 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ⊆ 𝒫 𝐵
4 relssres 5932 . . . . 5 ((Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ⊆ 𝒫 𝐵) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)})
52, 3, 4mp2an 689 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
65rneqi 5846 . . 3 ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
7 rnopab 5863 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
8 eleq1 2826 . . . . . . . . 9 ({𝑦} = 𝑥 → ({𝑦} ∈ 𝒫 𝐵𝑥 ∈ 𝒫 𝐵))
98biimparc 480 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → {𝑦} ∈ 𝒫 𝐵)
10 vex 3436 . . . . . . . . 9 𝑦 ∈ V
1110snelpw 5361 . . . . . . . 8 (𝑦𝐵 ↔ {𝑦} ∈ 𝒫 𝐵)
129, 11sylibr 233 . . . . . . 7 ((𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → 𝑦𝐵)
1312exlimiv 1933 . . . . . 6 (∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → 𝑦𝐵)
14 snelpwi 5360 . . . . . . . 8 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐵)
15 eqid 2738 . . . . . . . 8 {𝑦} = {𝑦}
16 eqeq2 2750 . . . . . . . . 9 (𝑥 = {𝑦} → ({𝑦} = 𝑥 ↔ {𝑦} = {𝑦}))
1716rspcev 3561 . . . . . . . 8 (({𝑦} ∈ 𝒫 𝐵 ∧ {𝑦} = {𝑦}) → ∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥)
1814, 15, 17sylancl 586 . . . . . . 7 (𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥)
19 df-rex 3070 . . . . . . 7 (∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
2018, 19sylib 217 . . . . . 6 (𝑦𝐵 → ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
2113, 20impbii 208 . . . . 5 (∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) ↔ 𝑦𝐵)
2221abbii 2808 . . . 4 {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = {𝑦𝑦𝐵}
23 abid2 2882 . . . 4 {𝑦𝑦𝐵} = 𝐵
247, 22, 233eqtri 2770 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = 𝐵
251, 6, 243eqtri 2770 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) = 𝐵
26 funopab 6469 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
27 mosneq 4773 . . . . 5 ∃*𝑦{𝑦} = 𝑥
2827moani 2553 . . . 4 ∃*𝑦(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)
2926, 28mpgbir 1802 . . 3 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
30 imafi 8958 . . 3 ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ∧ 𝒫 𝐵 ∈ Fin) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) ∈ Fin)
3129, 30mpan 687 . 2 (𝒫 𝐵 ∈ Fin → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) ∈ Fin)
3225, 31eqeltrrid 2844 1 (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃*wmo 2538  {cab 2715  wrex 3065  wss 3887  𝒫 cpw 4533  {csn 4561  {copab 5136  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Rel wrel 5594  Fun wfun 6427  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737
This theorem is referenced by:  pwfi  8961
  Copyright terms: Public domain W3C validator