MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfir Structured version   Visualization version   GIF version

Theorem pwfir 9383
Description: If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
pwfir (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)

Proof of Theorem pwfir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5713 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) = ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵)
2 relopab 5848 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
3 dmopabss 5943 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ⊆ 𝒫 𝐵
4 relssres 6051 . . . . 5 ((Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ⊆ 𝒫 𝐵) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)})
52, 3, 4mp2an 691 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
65rneqi 5962 . . 3 ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
7 rnopab 5979 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
8 eleq1 2832 . . . . . . . . 9 ({𝑦} = 𝑥 → ({𝑦} ∈ 𝒫 𝐵𝑥 ∈ 𝒫 𝐵))
98biimparc 479 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → {𝑦} ∈ 𝒫 𝐵)
10 vex 3492 . . . . . . . . 9 𝑦 ∈ V
1110snelpw 5465 . . . . . . . 8 (𝑦𝐵 ↔ {𝑦} ∈ 𝒫 𝐵)
129, 11sylibr 234 . . . . . . 7 ((𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → 𝑦𝐵)
1312exlimiv 1929 . . . . . 6 (∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → 𝑦𝐵)
14 snelpwi 5463 . . . . . . . 8 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐵)
15 eqid 2740 . . . . . . . 8 {𝑦} = {𝑦}
16 eqeq2 2752 . . . . . . . . 9 (𝑥 = {𝑦} → ({𝑦} = 𝑥 ↔ {𝑦} = {𝑦}))
1716rspcev 3635 . . . . . . . 8 (({𝑦} ∈ 𝒫 𝐵 ∧ {𝑦} = {𝑦}) → ∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥)
1814, 15, 17sylancl 585 . . . . . . 7 (𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥)
19 df-rex 3077 . . . . . . 7 (∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
2018, 19sylib 218 . . . . . 6 (𝑦𝐵 → ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
2113, 20impbii 209 . . . . 5 (∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) ↔ 𝑦𝐵)
2221abbii 2812 . . . 4 {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = {𝑦𝑦𝐵}
23 abid2 2882 . . . 4 {𝑦𝑦𝐵} = 𝐵
247, 22, 233eqtri 2772 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = 𝐵
251, 6, 243eqtri 2772 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) = 𝐵
26 funopab 6613 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
27 mosneq 4867 . . . . 5 ∃*𝑦{𝑦} = 𝑥
2827moani 2556 . . . 4 ∃*𝑦(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)
2926, 28mpgbir 1797 . . 3 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
30 imafi 9381 . . 3 ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ∧ 𝒫 𝐵 ∈ Fin) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) ∈ Fin)
3129, 30mpan 689 . 2 (𝒫 𝐵 ∈ Fin → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) ∈ Fin)
3225, 31eqeltrrid 2849 1 (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  ∃*wmo 2541  {cab 2717  wrex 3076  wss 3976  𝒫 cpw 4622  {csn 4648  {copab 5228  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Rel wrel 5705  Fun wfun 6567  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-dom 9005  df-fin 9007
This theorem is referenced by:  pwfi  9385
  Copyright terms: Public domain W3C validator