MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfir Structured version   Visualization version   GIF version

Theorem pwfir 9196
Description: If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.)
Assertion
Ref Expression
pwfir (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)

Proof of Theorem pwfir
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ima 5624 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) = ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵)
2 relopab 5759 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
3 dmopabss 5853 . . . . 5 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ⊆ 𝒫 𝐵
4 relssres 5966 . . . . 5 ((Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ∧ dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ⊆ 𝒫 𝐵) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)})
52, 3, 4mp2an 692 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
65rneqi 5872 . . 3 ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↾ 𝒫 𝐵) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
7 rnopab 5889 . . . 4 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
8 eleq1 2819 . . . . . . . . 9 ({𝑦} = 𝑥 → ({𝑦} ∈ 𝒫 𝐵𝑥 ∈ 𝒫 𝐵))
98biimparc 479 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → {𝑦} ∈ 𝒫 𝐵)
10 vex 3440 . . . . . . . . 9 𝑦 ∈ V
1110snelpw 5381 . . . . . . . 8 (𝑦𝐵 ↔ {𝑦} ∈ 𝒫 𝐵)
129, 11sylibr 234 . . . . . . 7 ((𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → 𝑦𝐵)
1312exlimiv 1931 . . . . . 6 (∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) → 𝑦𝐵)
14 snelpwi 5380 . . . . . . . 8 (𝑦𝐵 → {𝑦} ∈ 𝒫 𝐵)
15 eqid 2731 . . . . . . . 8 {𝑦} = {𝑦}
16 eqeq2 2743 . . . . . . . . 9 (𝑥 = {𝑦} → ({𝑦} = 𝑥 ↔ {𝑦} = {𝑦}))
1716rspcev 3572 . . . . . . . 8 (({𝑦} ∈ 𝒫 𝐵 ∧ {𝑦} = {𝑦}) → ∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥)
1814, 15, 17sylancl 586 . . . . . . 7 (𝑦𝐵 → ∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥)
19 df-rex 3057 . . . . . . 7 (∃𝑥 ∈ 𝒫 𝐵{𝑦} = 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
2018, 19sylib 218 . . . . . 6 (𝑦𝐵 → ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
2113, 20impbii 209 . . . . 5 (∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥) ↔ 𝑦𝐵)
2221abbii 2798 . . . 4 {𝑦 ∣ ∃𝑥(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = {𝑦𝑦𝐵}
23 abid2 2868 . . . 4 {𝑦𝑦𝐵} = 𝐵
247, 22, 233eqtri 2758 . . 3 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} = 𝐵
251, 6, 243eqtri 2758 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) = 𝐵
26 funopab 6511 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥))
27 mosneq 4789 . . . . 5 ∃*𝑦{𝑦} = 𝑥
2827moani 2548 . . . 4 ∃*𝑦(𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)
2926, 28mpgbir 1800 . . 3 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)}
30 imafi 9194 . . 3 ((Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} ∧ 𝒫 𝐵 ∈ Fin) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) ∈ Fin)
3129, 30mpan 690 . 2 (𝒫 𝐵 ∈ Fin → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝒫 𝐵 ∧ {𝑦} = 𝑥)} “ 𝒫 𝐵) ∈ Fin)
3225, 31eqeltrrid 2836 1 (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  ∃*wmo 2533  {cab 2709  wrex 3056  wss 3897  𝒫 cpw 4545  {csn 4571  {copab 5148  dom cdm 5611  ran crn 5612  cres 5613  cima 5614  Rel wrel 5616  Fun wfun 6470  Fincfn 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-1o 8380  df-en 8865  df-dom 8866  df-fin 8868
This theorem is referenced by:  pwfi  9198  r1omfi  35108
  Copyright terms: Public domain W3C validator