![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpofun | Structured version Visualization version GIF version |
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.) (Proof shortened by SN, 23-Jul-2024.) |
Ref | Expression |
---|---|
mpofun.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Ref | Expression |
---|---|
mpofun | ⊢ Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 3703 | . . . 4 ⊢ ∃*𝑧 𝑧 = 𝐶 | |
2 | 1 | moani 2547 | . . 3 ⊢ ∃*𝑧((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) |
3 | 2 | funoprab 7532 | . 2 ⊢ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
4 | mpofun.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
5 | df-mpo 7416 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
6 | 4, 5 | eqtri 2760 | . . 3 ⊢ 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
7 | 6 | funeqi 6569 | . 2 ⊢ (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)}) |
8 | 3, 7 | mpbir 230 | 1 ⊢ Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 Fun wfun 6537 {coprab 7412 ∈ cmpo 7413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-fun 6545 df-oprab 7415 df-mpo 7416 |
This theorem is referenced by: ofexg 7677 mpoexxg 8064 mpoexw 8067 mpocurryd 8256 imasvscafn 17487 coapm 18025 oppglsm 19551 gsum2d2lem 19882 evlslem2 21861 xkococnlem 23383 ucnima 24006 ucnprima 24007 fmucnd 24017 scutf 27538 smatrcl 33062 smatlem 33063 txomap 33100 tpr2rico 33178 elunirnmbfm 33536 relowlpssretop 36548 aovmpt4g 46208 mpoexxg2 47102 |
Copyright terms: Public domain | W3C validator |