MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpofun Structured version   Visualization version   GIF version

Theorem mpofun 7465
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.) (Proof shortened by SN, 23-Jul-2024.)
Hypothesis
Ref Expression
mpofun.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpofun Fun 𝐹
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 moeq 3664 . . . 4 ∃*𝑧 𝑧 = 𝐶
21moani 2547 . . 3 ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
32funoprab 7463 . 2 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
4 mpofun.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
5 df-mpo 7346 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
64, 5eqtri 2753 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
76funeqi 6498 . 2 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
83, 7mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2110  Fun wfun 6471  {coprab 7342  cmpo 7343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-fun 6479  df-oprab 7345  df-mpo 7346
This theorem is referenced by:  ofexg  7610  mpoexxg  8002  mpoexw  8005  mpocurryd  8194  imasvscafn  17433  coapm  17970  oppglsm  19547  gsum2d2lem  19878  evlslem2  22007  psdmul  22074  xkococnlem  23567  ucnima  24188  ucnprima  24189  fmucnd  24199  scutf  27746  smatrcl  33799  smatlem  33800  txomap  33837  tpr2rico  33915  elunirnmbfm  34255  relowlpssretop  37377  aovmpt4g  47211  mpoexxg2  48348  fucoelvv  49331
  Copyright terms: Public domain W3C validator