MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpofun Structured version   Visualization version   GIF version

Theorem mpofun 7479
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.) (Proof shortened by SN, 23-Jul-2024.)
Hypothesis
Ref Expression
mpofun.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpofun Fun 𝐹
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 moeq 3663 . . . 4 ∃*𝑧 𝑧 = 𝐶
21moani 2550 . . 3 ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
32funoprab 7477 . 2 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
4 mpofun.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
5 df-mpo 7360 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
64, 5eqtri 2756 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
76funeqi 6510 . 2 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
83, 7mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2113  Fun wfun 6483  {coprab 7356  cmpo 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-fun 6491  df-oprab 7359  df-mpo 7360
This theorem is referenced by:  ofexg  7624  mpoexxg  8016  mpoexw  8019  mpocurryd  8208  imasvscafn  17451  coapm  17988  oppglsm  19564  gsum2d2lem  19895  evlslem2  22024  psdmul  22091  xkococnlem  23584  ucnima  24205  ucnprima  24206  fmucnd  24216  scutf  27763  smatrcl  33820  smatlem  33821  txomap  33858  tpr2rico  33936  elunirnmbfm  34276  relowlpssretop  37419  aovmpt4g  47315  mpoexxg2  48452  fucoelvv  49435
  Copyright terms: Public domain W3C validator