MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpofun Structured version   Visualization version   GIF version

Theorem mpofun 7529
Description: The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.) (Proof shortened by SN, 23-Jul-2024.)
Hypothesis
Ref Expression
mpofun.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
mpofun Fun 𝐹
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem mpofun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 moeq 3690 . . . 4 ∃*𝑧 𝑧 = 𝐶
21moani 2552 . . 3 ∃*𝑧((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)
32funoprab 7527 . 2 Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
4 mpofun.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
5 df-mpo 7408 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
64, 5eqtri 2758 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
76funeqi 6556 . 2 (Fun 𝐹 ↔ Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)})
83, 7mpbir 231 1 Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  Fun wfun 6524  {coprab 7404  cmpo 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-fun 6532  df-oprab 7407  df-mpo 7408
This theorem is referenced by:  ofexg  7674  mpoexxg  8072  mpoexw  8075  mpocurryd  8266  imasvscafn  17549  coapm  18082  oppglsm  19621  gsum2d2lem  19952  evlslem2  22035  psdmul  22102  xkococnlem  23595  ucnima  24217  ucnprima  24218  fmucnd  24228  scutf  27774  smatrcl  33773  smatlem  33774  txomap  33811  tpr2rico  33889  elunirnmbfm  34229  relowlpssretop  37328  aovmpt4g  47178  mpoexxg2  48261  fucoelvv  49148
  Copyright terms: Public domain W3C validator