MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval Structured version   Visualization version   GIF version

Theorem joinval 18435
Description: Join value. Since both sides evaluate to when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝑈 requirement. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u 𝑈 = (lub‘𝐾)
joindef.j = (join‘𝐾)
joindef.k (𝜑𝐾𝑉)
joindef.x (𝜑𝑋𝑊)
joindef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
joinval (𝜑 → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))

Proof of Theorem joinval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . . . . 6 (𝜑𝐾𝑉)
2 joindef.u . . . . . . 7 𝑈 = (lub‘𝐾)
3 joindef.j . . . . . . 7 = (join‘𝐾)
42, 3joinfval2 18432 . . . . . 6 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
51, 4syl 17 . . . . 5 (𝜑 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
65oveqd 7448 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌))
76adantr 480 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌))
8 simpr 484 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → {𝑋, 𝑌} ∈ dom 𝑈)
9 eqidd 2736 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌}))
10 joindef.x . . . . . 6 (𝜑𝑋𝑊)
11 joindef.y . . . . . 6 (𝜑𝑌𝑍)
12 fvexd 6922 . . . . . 6 (𝜑 → (𝑈‘{𝑋, 𝑌}) ∈ V)
13 preq12 4740 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌})
1413eleq1d 2824 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
15143adant3 1131 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
16 simp3 1137 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → 𝑧 = (𝑈‘{𝑋, 𝑌}))
1713fveq2d 6911 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑈‘{𝑥, 𝑦}) = (𝑈‘{𝑋, 𝑌}))
18173adant3 1131 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (𝑈‘{𝑥, 𝑦}) = (𝑈‘{𝑋, 𝑌}))
1916, 18eqeq12d 2751 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (𝑧 = (𝑈‘{𝑥, 𝑦}) ↔ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})))
2015, 19anbi12d 632 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌}))))
21 moeq 3716 . . . . . . . 8 ∃*𝑧 𝑧 = (𝑈‘{𝑥, 𝑦})
2221moani 2551 . . . . . . 7 ∃*𝑧({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))
23 eqid 2735 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}
2420, 22, 23ovigg 7578 . . . . . 6 ((𝑋𝑊𝑌𝑍 ∧ (𝑈‘{𝑋, 𝑌}) ∈ V) → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
2510, 11, 12, 24syl3anc 1370 . . . . 5 (𝜑 → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
2625adantr 480 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
278, 9, 26mp2and 699 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌}))
287, 27eqtrd 2775 . 2 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
292, 3, 1, 10, 11joindef 18434 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))
3029notbid 318 . . . . 5 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ dom ↔ ¬ {𝑋, 𝑌} ∈ dom 𝑈))
31 df-ov 7434 . . . . . 6 (𝑋 𝑌) = ( ‘⟨𝑋, 𝑌⟩)
32 ndmfv 6942 . . . . . 6 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → ( ‘⟨𝑋, 𝑌⟩) = ∅)
3331, 32eqtrid 2787 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → (𝑋 𝑌) = ∅)
3430, 33biimtrrdi 254 . . . 4 (𝜑 → (¬ {𝑋, 𝑌} ∈ dom 𝑈 → (𝑋 𝑌) = ∅))
3534imp 406 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = ∅)
36 ndmfv 6942 . . . 4 (¬ {𝑋, 𝑌} ∈ dom 𝑈 → (𝑈‘{𝑋, 𝑌}) = ∅)
3736adantl 481 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑈‘{𝑋, 𝑌}) = ∅)
3835, 37eqtr4d 2778 . 2 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
3928, 38pm2.61dan 813 1 (𝜑 → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  {cpr 4633  cop 4637  dom cdm 5689  cfv 6563  (class class class)co 7431  {coprab 7432  lubclub 18367  joincjn 18369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-lub 18404  df-join 18406
This theorem is referenced by:  joincl  18436  joinval2  18439  joincomALT  18459  lubsn  18540  posjidm  48769  toplatjoin  48791
  Copyright terms: Public domain W3C validator