MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval Structured version   Visualization version   GIF version

Theorem joinval 18095
Description: Join value. Since both sides evaluate to when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝑈 requirement. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u 𝑈 = (lub‘𝐾)
joindef.j = (join‘𝐾)
joindef.k (𝜑𝐾𝑉)
joindef.x (𝜑𝑋𝑊)
joindef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
joinval (𝜑 → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))

Proof of Theorem joinval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . . . . 6 (𝜑𝐾𝑉)
2 joindef.u . . . . . . 7 𝑈 = (lub‘𝐾)
3 joindef.j . . . . . . 7 = (join‘𝐾)
42, 3joinfval2 18092 . . . . . 6 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
51, 4syl 17 . . . . 5 (𝜑 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
65oveqd 7292 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌))
76adantr 481 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌))
8 simpr 485 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → {𝑋, 𝑌} ∈ dom 𝑈)
9 eqidd 2739 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌}))
10 joindef.x . . . . . 6 (𝜑𝑋𝑊)
11 joindef.y . . . . . 6 (𝜑𝑌𝑍)
12 fvexd 6789 . . . . . 6 (𝜑 → (𝑈‘{𝑋, 𝑌}) ∈ V)
13 preq12 4671 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌})
1413eleq1d 2823 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
15143adant3 1131 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
16 simp3 1137 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → 𝑧 = (𝑈‘{𝑋, 𝑌}))
1713fveq2d 6778 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑈‘{𝑥, 𝑦}) = (𝑈‘{𝑋, 𝑌}))
18173adant3 1131 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (𝑈‘{𝑥, 𝑦}) = (𝑈‘{𝑋, 𝑌}))
1916, 18eqeq12d 2754 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (𝑧 = (𝑈‘{𝑥, 𝑦}) ↔ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})))
2015, 19anbi12d 631 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌}))))
21 moeq 3642 . . . . . . . 8 ∃*𝑧 𝑧 = (𝑈‘{𝑥, 𝑦})
2221moani 2553 . . . . . . 7 ∃*𝑧({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))
23 eqid 2738 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}
2420, 22, 23ovigg 7418 . . . . . 6 ((𝑋𝑊𝑌𝑍 ∧ (𝑈‘{𝑋, 𝑌}) ∈ V) → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
2510, 11, 12, 24syl3anc 1370 . . . . 5 (𝜑 → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
2625adantr 481 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
278, 9, 26mp2and 696 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌}))
287, 27eqtrd 2778 . 2 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
292, 3, 1, 10, 11joindef 18094 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))
3029notbid 318 . . . . 5 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ dom ↔ ¬ {𝑋, 𝑌} ∈ dom 𝑈))
31 df-ov 7278 . . . . . 6 (𝑋 𝑌) = ( ‘⟨𝑋, 𝑌⟩)
32 ndmfv 6804 . . . . . 6 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → ( ‘⟨𝑋, 𝑌⟩) = ∅)
3331, 32eqtrid 2790 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → (𝑋 𝑌) = ∅)
3430, 33syl6bir 253 . . . 4 (𝜑 → (¬ {𝑋, 𝑌} ∈ dom 𝑈 → (𝑋 𝑌) = ∅))
3534imp 407 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = ∅)
36 ndmfv 6804 . . . 4 (¬ {𝑋, 𝑌} ∈ dom 𝑈 → (𝑈‘{𝑋, 𝑌}) = ∅)
3736adantl 482 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑈‘{𝑋, 𝑌}) = ∅)
3835, 37eqtr4d 2781 . 2 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
3928, 38pm2.61dan 810 1 (𝜑 → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  {cpr 4563  cop 4567  dom cdm 5589  cfv 6433  (class class class)co 7275  {coprab 7276  lubclub 18027  joincjn 18029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-lub 18064  df-join 18066
This theorem is referenced by:  joincl  18096  joinval2  18099  joincomALT  18119  lubsn  18200  posjidm  46266  toplatjoin  46288
  Copyright terms: Public domain W3C validator