MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval Structured version   Visualization version   GIF version

Theorem joinval 17837
Description: Join value. Since both sides evaluate to when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝑈 requirement. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u 𝑈 = (lub‘𝐾)
joindef.j = (join‘𝐾)
joindef.k (𝜑𝐾𝑉)
joindef.x (𝜑𝑋𝑊)
joindef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
joinval (𝜑 → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))

Proof of Theorem joinval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . . . . 6 (𝜑𝐾𝑉)
2 joindef.u . . . . . . 7 𝑈 = (lub‘𝐾)
3 joindef.j . . . . . . 7 = (join‘𝐾)
42, 3joinfval2 17834 . . . . . 6 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
51, 4syl 17 . . . . 5 (𝜑 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
65oveqd 7208 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌))
76adantr 484 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌))
8 simpr 488 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → {𝑋, 𝑌} ∈ dom 𝑈)
9 eqidd 2737 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌}))
10 joindef.x . . . . . 6 (𝜑𝑋𝑊)
11 joindef.y . . . . . 6 (𝜑𝑌𝑍)
12 fvexd 6710 . . . . . 6 (𝜑 → (𝑈‘{𝑋, 𝑌}) ∈ V)
13 preq12 4637 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌})
1413eleq1d 2815 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
15143adant3 1134 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
16 simp3 1140 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → 𝑧 = (𝑈‘{𝑋, 𝑌}))
1713fveq2d 6699 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑈‘{𝑥, 𝑦}) = (𝑈‘{𝑋, 𝑌}))
18173adant3 1134 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (𝑈‘{𝑥, 𝑦}) = (𝑈‘{𝑋, 𝑌}))
1916, 18eqeq12d 2752 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (𝑧 = (𝑈‘{𝑥, 𝑦}) ↔ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})))
2015, 19anbi12d 634 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌}))))
21 moeq 3609 . . . . . . . 8 ∃*𝑧 𝑧 = (𝑈‘{𝑥, 𝑦})
2221moani 2552 . . . . . . 7 ∃*𝑧({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))
23 eqid 2736 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}
2420, 22, 23ovigg 7332 . . . . . 6 ((𝑋𝑊𝑌𝑍 ∧ (𝑈‘{𝑋, 𝑌}) ∈ V) → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
2510, 11, 12, 24syl3anc 1373 . . . . 5 (𝜑 → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
2625adantr 484 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
278, 9, 26mp2and 699 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌}))
287, 27eqtrd 2771 . 2 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
292, 3, 1, 10, 11joindef 17836 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))
3029notbid 321 . . . . 5 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ dom ↔ ¬ {𝑋, 𝑌} ∈ dom 𝑈))
31 df-ov 7194 . . . . . 6 (𝑋 𝑌) = ( ‘⟨𝑋, 𝑌⟩)
32 ndmfv 6725 . . . . . 6 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → ( ‘⟨𝑋, 𝑌⟩) = ∅)
3331, 32syl5eq 2783 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → (𝑋 𝑌) = ∅)
3430, 33syl6bir 257 . . . 4 (𝜑 → (¬ {𝑋, 𝑌} ∈ dom 𝑈 → (𝑋 𝑌) = ∅))
3534imp 410 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = ∅)
36 ndmfv 6725 . . . 4 (¬ {𝑋, 𝑌} ∈ dom 𝑈 → (𝑈‘{𝑋, 𝑌}) = ∅)
3736adantl 485 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑈‘{𝑋, 𝑌}) = ∅)
3835, 37eqtr4d 2774 . 2 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
3928, 38pm2.61dan 813 1 (𝜑 → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  Vcvv 3398  c0 4223  {cpr 4529  cop 4533  dom cdm 5536  cfv 6358  (class class class)co 7191  {coprab 7192  lubclub 17770  joincjn 17772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-lub 17806  df-join 17808
This theorem is referenced by:  joincl  17838  joinval2  17841  joincomALT  17861  lubsn  17942  posjidm  45882  toplatjoin  45904
  Copyright terms: Public domain W3C validator