MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval Structured version   Visualization version   GIF version

Theorem joinval 17615
Description: Join value. Since both sides evaluate to when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝑈 requirement. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u 𝑈 = (lub‘𝐾)
joindef.j = (join‘𝐾)
joindef.k (𝜑𝐾𝑉)
joindef.x (𝜑𝑋𝑊)
joindef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
joinval (𝜑 → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))

Proof of Theorem joinval
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . . . . 6 (𝜑𝐾𝑉)
2 joindef.u . . . . . . 7 𝑈 = (lub‘𝐾)
3 joindef.j . . . . . . 7 = (join‘𝐾)
42, 3joinfval2 17612 . . . . . 6 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
51, 4syl 17 . . . . 5 (𝜑 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
65oveqd 7173 . . . 4 (𝜑 → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌))
76adantr 483 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌))
8 simpr 487 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → {𝑋, 𝑌} ∈ dom 𝑈)
9 eqidd 2822 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌}))
10 joindef.x . . . . . 6 (𝜑𝑋𝑊)
11 joindef.y . . . . . 6 (𝜑𝑌𝑍)
12 fvexd 6685 . . . . . 6 (𝜑 → (𝑈‘{𝑋, 𝑌}) ∈ V)
13 preq12 4671 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑥, 𝑦} = {𝑋, 𝑌})
1413eleq1d 2897 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
15143adant3 1128 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
16 simp3 1134 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → 𝑧 = (𝑈‘{𝑋, 𝑌}))
1713fveq2d 6674 . . . . . . . . . 10 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑈‘{𝑥, 𝑦}) = (𝑈‘{𝑋, 𝑌}))
18173adant3 1128 . . . . . . . . 9 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (𝑈‘{𝑥, 𝑦}) = (𝑈‘{𝑋, 𝑌}))
1916, 18eqeq12d 2837 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (𝑧 = (𝑈‘{𝑥, 𝑦}) ↔ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})))
2015, 19anbi12d 632 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌𝑧 = (𝑈‘{𝑋, 𝑌})) → (({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦})) ↔ ({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌}))))
21 moeq 3698 . . . . . . . 8 ∃*𝑧 𝑧 = (𝑈‘{𝑥, 𝑦})
2221moani 2637 . . . . . . 7 ∃*𝑧({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))
23 eqid 2821 . . . . . . 7 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}
2420, 22, 23ovigg 7295 . . . . . 6 ((𝑋𝑊𝑌𝑍 ∧ (𝑈‘{𝑋, 𝑌}) ∈ V) → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
2510, 11, 12, 24syl3anc 1367 . . . . 5 (𝜑 → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
2625adantr 483 . . . 4 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (({𝑋, 𝑌} ∈ dom 𝑈 ∧ (𝑈‘{𝑋, 𝑌}) = (𝑈‘{𝑋, 𝑌})) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌})))
278, 9, 26mp2and 697 . . 3 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}𝑌) = (𝑈‘{𝑋, 𝑌}))
287, 27eqtrd 2856 . 2 ((𝜑 ∧ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
292, 3, 1, 10, 11joindef 17614 . . . . . 6 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))
3029notbid 320 . . . . 5 (𝜑 → (¬ ⟨𝑋, 𝑌⟩ ∈ dom ↔ ¬ {𝑋, 𝑌} ∈ dom 𝑈))
31 df-ov 7159 . . . . . 6 (𝑋 𝑌) = ( ‘⟨𝑋, 𝑌⟩)
32 ndmfv 6700 . . . . . 6 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → ( ‘⟨𝑋, 𝑌⟩) = ∅)
3331, 32syl5eq 2868 . . . . 5 (¬ ⟨𝑋, 𝑌⟩ ∈ dom → (𝑋 𝑌) = ∅)
3430, 33syl6bir 256 . . . 4 (𝜑 → (¬ {𝑋, 𝑌} ∈ dom 𝑈 → (𝑋 𝑌) = ∅))
3534imp 409 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = ∅)
36 ndmfv 6700 . . . 4 (¬ {𝑋, 𝑌} ∈ dom 𝑈 → (𝑈‘{𝑋, 𝑌}) = ∅)
3736adantl 484 . . 3 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑈‘{𝑋, 𝑌}) = ∅)
3835, 37eqtr4d 2859 . 2 ((𝜑 ∧ ¬ {𝑋, 𝑌} ∈ dom 𝑈) → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
3928, 38pm2.61dan 811 1 (𝜑 → (𝑋 𝑌) = (𝑈‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  c0 4291  {cpr 4569  cop 4573  dom cdm 5555  cfv 6355  (class class class)co 7156  {coprab 7157  lubclub 17552  joincjn 17554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-lub 17584  df-join 17586
This theorem is referenced by:  joincl  17616  joinval2  17619  joincomALT  17639  lubsn  17704
  Copyright terms: Public domain W3C validator