![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab6 | Structured version Visualization version GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvopab6.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} |
fvopab6.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab6.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
fvopab6 | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ V) | |
2 | fvopab6.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | fvopab6.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 3 | eqeq2d 2751 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
5 | 2, 4 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑦 = 𝐵) ↔ (𝜓 ∧ 𝑦 = 𝐶))) |
6 | iba 527 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝜓 ↔ (𝜓 ∧ 𝑦 = 𝐶))) | |
7 | 6 | bicomd 223 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝜓 ∧ 𝑦 = 𝐶) ↔ 𝜓)) |
8 | moeq 3729 | . . . . . 6 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
9 | 8 | moani 2556 | . . . . 5 ⊢ ∃*𝑦(𝜑 ∧ 𝑦 = 𝐵) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ V → ∃*𝑦(𝜑 ∧ 𝑦 = 𝐵)) |
11 | fvopab6.1 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} | |
12 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
13 | 12 | biantrur 530 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))) |
14 | 13 | opabbii 5233 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))} |
15 | 11, 14 | eqtri 2768 | . . . 4 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))} |
16 | 5, 7, 10, 15 | fvopab3ig 7025 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑅) → (𝜓 → (𝐹‘𝐴) = 𝐶)) |
17 | 1, 16 | sylan 579 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝜓 → (𝐹‘𝐴) = 𝐶)) |
18 | 17 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 Vcvv 3488 {copab 5228 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |