Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvopab6 | Structured version Visualization version GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
fvopab6.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} |
fvopab6.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab6.3 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
fvopab6 | ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . 3 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ V) | |
2 | fvopab6.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | fvopab6.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
4 | 3 | eqeq2d 2749 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑦 = 𝐵 ↔ 𝑦 = 𝐶)) |
5 | 2, 4 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑦 = 𝐵) ↔ (𝜓 ∧ 𝑦 = 𝐶))) |
6 | iba 527 | . . . . 5 ⊢ (𝑦 = 𝐶 → (𝜓 ↔ (𝜓 ∧ 𝑦 = 𝐶))) | |
7 | 6 | bicomd 222 | . . . 4 ⊢ (𝑦 = 𝐶 → ((𝜓 ∧ 𝑦 = 𝐶) ↔ 𝜓)) |
8 | moeq 3637 | . . . . . 6 ⊢ ∃*𝑦 𝑦 = 𝐵 | |
9 | 8 | moani 2553 | . . . . 5 ⊢ ∃*𝑦(𝜑 ∧ 𝑦 = 𝐵) |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ V → ∃*𝑦(𝜑 ∧ 𝑦 = 𝐵)) |
11 | fvopab6.1 | . . . . 5 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} | |
12 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
13 | 12 | biantrur 530 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))) |
14 | 13 | opabbii 5137 | . . . . 5 ⊢ {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))} |
15 | 11, 14 | eqtri 2766 | . . . 4 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ (𝜑 ∧ 𝑦 = 𝐵))} |
16 | 5, 7, 10, 15 | fvopab3ig 6853 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐶 ∈ 𝑅) → (𝜓 → (𝐹‘𝐴) = 𝐶)) |
17 | 1, 16 | sylan 579 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅) → (𝜓 → (𝐹‘𝐴) = 𝐶)) |
18 | 17 | 3impia 1115 | 1 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ∧ 𝜓) → (𝐹‘𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 Vcvv 3422 {copab 5132 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |