MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab6 Structured version   Visualization version   GIF version

Theorem fvopab6 7031
Description: Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab6.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}
fvopab6.2 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab6.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
fvopab6 ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝜓,𝑥,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab6
StepHypRef Expression
1 elex 3492 . . 3 (𝐴𝐷𝐴 ∈ V)
2 fvopab6.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
3 fvopab6.3 . . . . . 6 (𝑥 = 𝐴𝐵 = 𝐶)
43eqeq2d 2742 . . . . 5 (𝑥 = 𝐴 → (𝑦 = 𝐵𝑦 = 𝐶))
52, 4anbi12d 630 . . . 4 (𝑥 = 𝐴 → ((𝜑𝑦 = 𝐵) ↔ (𝜓𝑦 = 𝐶)))
6 iba 527 . . . . 5 (𝑦 = 𝐶 → (𝜓 ↔ (𝜓𝑦 = 𝐶)))
76bicomd 222 . . . 4 (𝑦 = 𝐶 → ((𝜓𝑦 = 𝐶) ↔ 𝜓))
8 moeq 3703 . . . . . 6 ∃*𝑦 𝑦 = 𝐵
98moani 2546 . . . . 5 ∃*𝑦(𝜑𝑦 = 𝐵)
109a1i 11 . . . 4 (𝑥 ∈ V → ∃*𝑦(𝜑𝑦 = 𝐵))
11 fvopab6.1 . . . . 5 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}
12 vex 3477 . . . . . . 7 𝑥 ∈ V
1312biantrur 530 . . . . . 6 ((𝜑𝑦 = 𝐵) ↔ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵)))
1413opabbii 5215 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵))}
1511, 14eqtri 2759 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ (𝜑𝑦 = 𝐵))}
165, 7, 10, 15fvopab3ig 6994 . . 3 ((𝐴 ∈ V ∧ 𝐶𝑅) → (𝜓 → (𝐹𝐴) = 𝐶))
171, 16sylan 579 . 2 ((𝐴𝐷𝐶𝑅) → (𝜓 → (𝐹𝐴) = 𝐶))
18173impia 1116 1 ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  ∃*wmo 2531  Vcvv 3473  {copab 5210  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator