MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stconst Structured version   Visualization version   GIF version

Theorem 1stconst 7911
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
1stconst (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)

Proof of Theorem 1stconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4707 . . 3 (𝐵𝑉 → {𝐵} ≠ ∅)
2 fo1stres 7830 . . 3 ({𝐵} ≠ ∅ → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
31, 2syl 17 . 2 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
4 moeq 3637 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝑦, 𝐵
54moani 2553 . . . . 5 ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)
6 vex 3426 . . . . . . . 8 𝑦 ∈ V
76brresi 5889 . . . . . . 7 (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦))
8 fo1st 7824 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 6674 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 6804 . . . . . . . . . 10 ((1st Fn V ∧ 𝑥 ∈ V) → ((1st𝑥) = 𝑦𝑥1st 𝑦))
1310, 11, 12mp2an 688 . . . . . . . . 9 ((1st𝑥) = 𝑦𝑥1st 𝑦)
1413anbi2i 622 . . . . . . . 8 ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦) ↔ (𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦))
15 elxp7 7839 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})))
16 eleq1 2826 . . . . . . . . . . . . . . 15 ((1st𝑥) = 𝑦 → ((1st𝑥) ∈ 𝐴𝑦𝐴))
1716biimpac 478 . . . . . . . . . . . . . 14 (((1st𝑥) ∈ 𝐴 ∧ (1st𝑥) = 𝑦) → 𝑦𝐴)
1817adantlr 711 . . . . . . . . . . . . 13 ((((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}) ∧ (1st𝑥) = 𝑦) → 𝑦𝐴)
1918adantll 710 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) ∧ (1st𝑥) = 𝑦) → 𝑦𝐴)
20 elsni 4575 . . . . . . . . . . . . . 14 ((2nd𝑥) ∈ {𝐵} → (2nd𝑥) = 𝐵)
21 eqopi 7840 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2221anass1rs 651 . . . . . . . . . . . . . 14 (((𝑥 ∈ (V × V) ∧ (2nd𝑥) = 𝐵) ∧ (1st𝑥) = 𝑦) → 𝑥 = ⟨𝑦, 𝐵⟩)
2320, 22sylanl2 677 . . . . . . . . . . . . 13 (((𝑥 ∈ (V × V) ∧ (2nd𝑥) ∈ {𝐵}) ∧ (1st𝑥) = 𝑦) → 𝑥 = ⟨𝑦, 𝐵⟩)
2423adantlrl 716 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) ∧ (1st𝑥) = 𝑦) → 𝑥 = ⟨𝑦, 𝐵⟩)
2519, 24jca 511 . . . . . . . . . . 11 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) ∧ (1st𝑥) = 𝑦) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2615, 25sylanb 580 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2726adantl 481 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦)) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
28 simprr 769 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 = ⟨𝑦, 𝐵⟩)
29 simprl 767 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑦𝐴)
30 snidg 4592 . . . . . . . . . . . . 13 (𝐵𝑉𝐵 ∈ {𝐵})
3130adantr 480 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵 ∈ {𝐵})
3229, 31opelxpd 5618 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3328, 32eqeltrd 2839 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 ∈ (𝐴 × {𝐵}))
3428fveq2d 6760 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = (1st ‘⟨𝑦, 𝐵⟩))
35 simpl 482 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵𝑉)
36 op1stg 7816 . . . . . . . . . . . 12 ((𝑦𝐴𝐵𝑉) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3729, 35, 36syl2anc 583 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3834, 37eqtrd 2778 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = 𝑦)
3933, 38jca 511 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦))
4027, 39impbida 797 . . . . . . . 8 (𝐵𝑉 → ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4114, 40bitr3id 284 . . . . . . 7 (𝐵𝑉 → ((𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
427, 41syl5bb 282 . . . . . 6 (𝐵𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4342mobidv 2549 . . . . 5 (𝐵𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
445, 43mpbiri 257 . . . 4 (𝐵𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4544alrimiv 1931 . . 3 (𝐵𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
46 funcnv2 6486 . . 3 (Fun (1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4745, 46sylibr 233 . 2 (𝐵𝑉 → Fun (1st ↾ (𝐴 × {𝐵})))
48 dff1o3 6706 . 2 ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴 ↔ ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴 ∧ Fun (1st ↾ (𝐴 × {𝐵}))))
493, 47, 48sylanbrc 582 1 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  ∃*wmo 2538  wne 2942  Vcvv 3422  c0 4253  {csn 4558  cop 4564   class class class wbr 5070   × cxp 5578  ccnv 5579  cres 5582  Fun wfun 6412   Fn wfn 6413  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1st 7804  df-2nd 7805
This theorem is referenced by:  curry2  7918  domss2  8872  fv1stcnv  33657
  Copyright terms: Public domain W3C validator