MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stconst Structured version   Visualization version   GIF version

Theorem 1stconst 7797
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
1stconst (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)

Proof of Theorem 1stconst
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4712 . . 3 (𝐵𝑉 → {𝐵} ≠ ∅)
2 fo1stres 7717 . . 3 ({𝐵} ≠ ∅ → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
31, 2syl 17 . 2 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴)
4 moeq 3700 . . . . . 6 ∃*𝑥 𝑥 = ⟨𝑦, 𝐵
54moani 2637 . . . . 5 ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)
6 vex 3499 . . . . . . . 8 𝑦 ∈ V
76brresi 5864 . . . . . . 7 (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦))
8 fo1st 7711 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 6594 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 3499 . . . . . . . . . 10 𝑥 ∈ V
12 fnbrfvb 6720 . . . . . . . . . 10 ((1st Fn V ∧ 𝑥 ∈ V) → ((1st𝑥) = 𝑦𝑥1st 𝑦))
1310, 11, 12mp2an 690 . . . . . . . . 9 ((1st𝑥) = 𝑦𝑥1st 𝑦)
1413anbi2i 624 . . . . . . . 8 ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦) ↔ (𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦))
15 elxp7 7726 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})))
16 eleq1 2902 . . . . . . . . . . . . . . 15 ((1st𝑥) = 𝑦 → ((1st𝑥) ∈ 𝐴𝑦𝐴))
1716biimpac 481 . . . . . . . . . . . . . 14 (((1st𝑥) ∈ 𝐴 ∧ (1st𝑥) = 𝑦) → 𝑦𝐴)
1817adantlr 713 . . . . . . . . . . . . 13 ((((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵}) ∧ (1st𝑥) = 𝑦) → 𝑦𝐴)
1918adantll 712 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) ∧ (1st𝑥) = 𝑦) → 𝑦𝐴)
20 elsni 4586 . . . . . . . . . . . . . 14 ((2nd𝑥) ∈ {𝐵} → (2nd𝑥) = 𝐵)
21 eqopi 7727 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (V × V) ∧ ((1st𝑥) = 𝑦 ∧ (2nd𝑥) = 𝐵)) → 𝑥 = ⟨𝑦, 𝐵⟩)
2221anass1rs 653 . . . . . . . . . . . . . 14 (((𝑥 ∈ (V × V) ∧ (2nd𝑥) = 𝐵) ∧ (1st𝑥) = 𝑦) → 𝑥 = ⟨𝑦, 𝐵⟩)
2320, 22sylanl2 679 . . . . . . . . . . . . 13 (((𝑥 ∈ (V × V) ∧ (2nd𝑥) ∈ {𝐵}) ∧ (1st𝑥) = 𝑦) → 𝑥 = ⟨𝑦, 𝐵⟩)
2423adantlrl 718 . . . . . . . . . . . 12 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) ∧ (1st𝑥) = 𝑦) → 𝑥 = ⟨𝑦, 𝐵⟩)
2519, 24jca 514 . . . . . . . . . . 11 (((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐴 ∧ (2nd𝑥) ∈ {𝐵})) ∧ (1st𝑥) = 𝑦) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2615, 25sylanb 583 . . . . . . . . . 10 ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
2726adantl 484 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦)) → (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩))
28 simprr 771 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 = ⟨𝑦, 𝐵⟩)
29 simprl 769 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑦𝐴)
30 snidg 4601 . . . . . . . . . . . . 13 (𝐵𝑉𝐵 ∈ {𝐵})
3130adantr 483 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵 ∈ {𝐵})
3229, 31opelxpd 5595 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → ⟨𝑦, 𝐵⟩ ∈ (𝐴 × {𝐵}))
3328, 32eqeltrd 2915 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝑥 ∈ (𝐴 × {𝐵}))
3428fveq2d 6676 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = (1st ‘⟨𝑦, 𝐵⟩))
35 simpl 485 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → 𝐵𝑉)
36 op1stg 7703 . . . . . . . . . . . 12 ((𝑦𝐴𝐵𝑉) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3729, 35, 36syl2anc 586 . . . . . . . . . . 11 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st ‘⟨𝑦, 𝐵⟩) = 𝑦)
3834, 37eqtrd 2858 . . . . . . . . . 10 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (1st𝑥) = 𝑦)
3933, 38jca 514 . . . . . . . . 9 ((𝐵𝑉 ∧ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)) → (𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦))
4027, 39impbida 799 . . . . . . . 8 (𝐵𝑉 → ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st𝑥) = 𝑦) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4114, 40syl5bbr 287 . . . . . . 7 (𝐵𝑉 → ((𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦) ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
427, 41syl5bb 285 . . . . . 6 (𝐵𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
4342mobidv 2633 . . . . 5 (𝐵𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦𝐴𝑥 = ⟨𝑦, 𝐵⟩)))
445, 43mpbiri 260 . . . 4 (𝐵𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4544alrimiv 1928 . . 3 (𝐵𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
46 funcnv2 6424 . . 3 (Fun (1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦)
4745, 46sylibr 236 . 2 (𝐵𝑉 → Fun (1st ↾ (𝐴 × {𝐵})))
48 dff1o3 6623 . 2 ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴 ↔ ((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto𝐴 ∧ Fun (1st ↾ (𝐴 × {𝐵}))))
493, 47, 48sylanbrc 585 1 (𝐵𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wcel 2114  ∃*wmo 2620  wne 3018  Vcvv 3496  c0 4293  {csn 4569  cop 4575   class class class wbr 5068   × cxp 5555  ccnv 5556  cres 5559  Fun wfun 6351   Fn wfn 6352  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  1st c1st 7689  2nd c2nd 7690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-1st 7691  df-2nd 7692
This theorem is referenced by:  curry2  7804  domss2  8678  fv1stcnv  33022
  Copyright terms: Public domain W3C validator