MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stconst Structured version   Visualization version   GIF version

Theorem 1stconst 8086
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
1stconst (šµ ∈ š‘‰ → (1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–1-1-ontoā†’š“)

Proof of Theorem 1stconst
Dummy variables š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4773 . . 3 (šµ ∈ š‘‰ → {šµ} ≠ āˆ…)
2 fo1stres 8000 . . 3 ({šµ} ≠ āˆ… → (1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–ontoā†’š“)
31, 2syl 17 . 2 (šµ ∈ š‘‰ → (1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–ontoā†’š“)
4 moeq 3698 . . . . . 6 ∃*š‘„ š‘„ = āŸØš‘¦, šµāŸ©
54moani 2541 . . . . 5 ∃*š‘„(š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)
6 vex 3472 . . . . . . . 8 š‘¦ ∈ V
76brresi 5984 . . . . . . 7 (š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦ ↔ (š‘„ ∈ (š“ Ɨ {šµ}) ∧ š‘„1st š‘¦))
8 fo1st 7994 . . . . . . . . . . 11 1st :V–onto→V
9 fofn 6801 . . . . . . . . . . 11 (1st :V–onto→V → 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 3472 . . . . . . . . . 10 š‘„ ∈ V
12 fnbrfvb 6938 . . . . . . . . . 10 ((1st Fn V ∧ š‘„ ∈ V) → ((1st ā€˜š‘„) = š‘¦ ↔ š‘„1st š‘¦))
1310, 11, 12mp2an 689 . . . . . . . . 9 ((1st ā€˜š‘„) = š‘¦ ↔ š‘„1st š‘¦)
1413anbi2i 622 . . . . . . . 8 ((š‘„ ∈ (š“ Ɨ {šµ}) ∧ (1st ā€˜š‘„) = š‘¦) ↔ (š‘„ ∈ (š“ Ɨ {šµ}) ∧ š‘„1st š‘¦))
15 elxp7 8009 . . . . . . . . . . 11 (š‘„ ∈ (š“ Ɨ {šµ}) ↔ (š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ})))
16 eleq1 2815 . . . . . . . . . . . . . . 15 ((1st ā€˜š‘„) = š‘¦ → ((1st ā€˜š‘„) ∈ š“ ↔ š‘¦ ∈ š“))
1716biimpac 478 . . . . . . . . . . . . . 14 (((1st ā€˜š‘„) ∈ š“ ∧ (1st ā€˜š‘„) = š‘¦) → š‘¦ ∈ š“)
1817adantlr 712 . . . . . . . . . . . . 13 ((((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ}) ∧ (1st ā€˜š‘„) = š‘¦) → š‘¦ ∈ š“)
1918adantll 711 . . . . . . . . . . . 12 (((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ})) ∧ (1st ā€˜š‘„) = š‘¦) → š‘¦ ∈ š“)
20 elsni 4640 . . . . . . . . . . . . . 14 ((2nd ā€˜š‘„) ∈ {šµ} → (2nd ā€˜š‘„) = šµ)
21 eqopi 8010 . . . . . . . . . . . . . . 15 ((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) = š‘¦ ∧ (2nd ā€˜š‘„) = šµ)) → š‘„ = āŸØš‘¦, šµāŸ©)
2221anass1rs 652 . . . . . . . . . . . . . 14 (((š‘„ ∈ (V Ɨ V) ∧ (2nd ā€˜š‘„) = šµ) ∧ (1st ā€˜š‘„) = š‘¦) → š‘„ = āŸØš‘¦, šµāŸ©)
2320, 22sylanl2 678 . . . . . . . . . . . . 13 (((š‘„ ∈ (V Ɨ V) ∧ (2nd ā€˜š‘„) ∈ {šµ}) ∧ (1st ā€˜š‘„) = š‘¦) → š‘„ = āŸØš‘¦, šµāŸ©)
2423adantlrl 717 . . . . . . . . . . . 12 (((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ})) ∧ (1st ā€˜š‘„) = š‘¦) → š‘„ = āŸØš‘¦, šµāŸ©)
2519, 24jca 511 . . . . . . . . . . 11 (((š‘„ ∈ (V Ɨ V) ∧ ((1st ā€˜š‘„) ∈ š“ ∧ (2nd ā€˜š‘„) ∈ {šµ})) ∧ (1st ā€˜š‘„) = š‘¦) → (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©))
2615, 25sylanb 580 . . . . . . . . . 10 ((š‘„ ∈ (š“ Ɨ {šµ}) ∧ (1st ā€˜š‘„) = š‘¦) → (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©))
2726adantl 481 . . . . . . . . 9 ((šµ ∈ š‘‰ ∧ (š‘„ ∈ (š“ Ɨ {šµ}) ∧ (1st ā€˜š‘„) = š‘¦)) → (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©))
28 simprr 770 . . . . . . . . . . 11 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → š‘„ = āŸØš‘¦, šµāŸ©)
29 simprl 768 . . . . . . . . . . . 12 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → š‘¦ ∈ š“)
30 snidg 4657 . . . . . . . . . . . . 13 (šµ ∈ š‘‰ → šµ ∈ {šµ})
3130adantr 480 . . . . . . . . . . . 12 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → šµ ∈ {šµ})
3229, 31opelxpd 5708 . . . . . . . . . . 11 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → āŸØš‘¦, šµāŸ© ∈ (š“ Ɨ {šµ}))
3328, 32eqeltrd 2827 . . . . . . . . . 10 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → š‘„ ∈ (š“ Ɨ {šµ}))
3428fveq2d 6889 . . . . . . . . . . 11 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → (1st ā€˜š‘„) = (1st ā€˜āŸØš‘¦, šµāŸ©))
35 simpl 482 . . . . . . . . . . . 12 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → šµ ∈ š‘‰)
36 op1stg 7986 . . . . . . . . . . . 12 ((š‘¦ ∈ š“ ∧ šµ ∈ š‘‰) → (1st ā€˜āŸØš‘¦, šµāŸ©) = š‘¦)
3729, 35, 36syl2anc 583 . . . . . . . . . . 11 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → (1st ā€˜āŸØš‘¦, šµāŸ©) = š‘¦)
3834, 37eqtrd 2766 . . . . . . . . . 10 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → (1st ā€˜š‘„) = š‘¦)
3933, 38jca 511 . . . . . . . . 9 ((šµ ∈ š‘‰ ∧ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)) → (š‘„ ∈ (š“ Ɨ {šµ}) ∧ (1st ā€˜š‘„) = š‘¦))
4027, 39impbida 798 . . . . . . . 8 (šµ ∈ š‘‰ → ((š‘„ ∈ (š“ Ɨ {šµ}) ∧ (1st ā€˜š‘„) = š‘¦) ↔ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)))
4114, 40bitr3id 285 . . . . . . 7 (šµ ∈ š‘‰ → ((š‘„ ∈ (š“ Ɨ {šµ}) ∧ š‘„1st š‘¦) ↔ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)))
427, 41bitrid 283 . . . . . 6 (šµ ∈ š‘‰ → (š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦ ↔ (š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)))
4342mobidv 2537 . . . . 5 (šµ ∈ š‘‰ → (∃*š‘„ š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦ ↔ ∃*š‘„(š‘¦ ∈ š“ ∧ š‘„ = āŸØš‘¦, šµāŸ©)))
445, 43mpbiri 258 . . . 4 (šµ ∈ š‘‰ → ∃*š‘„ š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦)
4544alrimiv 1922 . . 3 (šµ ∈ š‘‰ → āˆ€š‘¦āˆƒ*š‘„ š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦)
46 funcnv2 6610 . . 3 (Fun ā—”(1st ↾ (š“ Ɨ {šµ})) ↔ āˆ€š‘¦āˆƒ*š‘„ š‘„(1st ↾ (š“ Ɨ {šµ}))š‘¦)
4745, 46sylibr 233 . 2 (šµ ∈ š‘‰ → Fun ā—”(1st ↾ (š“ Ɨ {šµ})))
48 dff1o3 6833 . 2 ((1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–1-1-ontoā†’š“ ↔ ((1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–ontoā†’š“ ∧ Fun ā—”(1st ↾ (š“ Ɨ {šµ}))))
493, 47, 48sylanbrc 582 1 (šµ ∈ š‘‰ → (1st ↾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})–1-1-ontoā†’š“)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 395  āˆ€wal 1531   = wceq 1533   ∈ wcel 2098  āˆƒ*wmo 2526   ≠ wne 2934  Vcvv 3468  āˆ…c0 4317  {csn 4623  āŸØcop 4629   class class class wbr 5141   Ɨ cxp 5667  ā—”ccnv 5668   ↾ cres 5671  Fun wfun 6531   Fn wfn 6532  ā€“onto→wfo 6535  ā€“1-1-onto→wf1o 6536  ā€˜cfv 6537  1st c1st 7972  2nd c2nd 7973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-1st 7974  df-2nd 7975
This theorem is referenced by:  curry2  8093  domss2  9138  fv1stcnv  35281
  Copyright terms: Public domain W3C validator