MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stconst Structured version   Visualization version   GIF version

Theorem 1stconst 8082
Description: The mapping of a restriction of the 1st function to a constant function. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
1stconst (šµ āˆˆ š‘‰ ā†’ (1st ā†¾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})ā€“1-1-ontoā†’š“)

Proof of Theorem 1stconst
Dummy variables š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnzg 4777 . . 3 (šµ āˆˆ š‘‰ ā†’ {šµ} ā‰  āˆ…)
2 fo1stres 7997 . . 3 ({šµ} ā‰  āˆ… ā†’ (1st ā†¾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})ā€“ontoā†’š“)
31, 2syl 17 . 2 (šµ āˆˆ š‘‰ ā†’ (1st ā†¾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})ā€“ontoā†’š“)
4 moeq 3702 . . . . . 6 āˆƒ*š‘„ š‘„ = āŸØš‘¦, šµāŸ©
54moani 2547 . . . . 5 āˆƒ*š‘„(š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)
6 vex 3478 . . . . . . . 8 š‘¦ āˆˆ V
76brresi 5988 . . . . . . 7 (š‘„(1st ā†¾ (š“ Ɨ {šµ}))š‘¦ ā†” (š‘„ āˆˆ (š“ Ɨ {šµ}) āˆ§ š‘„1st š‘¦))
8 fo1st 7991 . . . . . . . . . . 11 1st :Vā€“ontoā†’V
9 fofn 6804 . . . . . . . . . . 11 (1st :Vā€“ontoā†’V ā†’ 1st Fn V)
108, 9ax-mp 5 . . . . . . . . . 10 1st Fn V
11 vex 3478 . . . . . . . . . 10 š‘„ āˆˆ V
12 fnbrfvb 6941 . . . . . . . . . 10 ((1st Fn V āˆ§ š‘„ āˆˆ V) ā†’ ((1st ā€˜š‘„) = š‘¦ ā†” š‘„1st š‘¦))
1310, 11, 12mp2an 690 . . . . . . . . 9 ((1st ā€˜š‘„) = š‘¦ ā†” š‘„1st š‘¦)
1413anbi2i 623 . . . . . . . 8 ((š‘„ āˆˆ (š“ Ɨ {šµ}) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†” (š‘„ āˆˆ (š“ Ɨ {šµ}) āˆ§ š‘„1st š‘¦))
15 elxp7 8006 . . . . . . . . . . 11 (š‘„ āˆˆ (š“ Ɨ {šµ}) ā†” (š‘„ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘„) āˆˆ š“ āˆ§ (2nd ā€˜š‘„) āˆˆ {šµ})))
16 eleq1 2821 . . . . . . . . . . . . . . 15 ((1st ā€˜š‘„) = š‘¦ ā†’ ((1st ā€˜š‘„) āˆˆ š“ ā†” š‘¦ āˆˆ š“))
1716biimpac 479 . . . . . . . . . . . . . 14 (((1st ā€˜š‘„) āˆˆ š“ āˆ§ (1st ā€˜š‘„) = š‘¦) ā†’ š‘¦ āˆˆ š“)
1817adantlr 713 . . . . . . . . . . . . 13 ((((1st ā€˜š‘„) āˆˆ š“ āˆ§ (2nd ā€˜š‘„) āˆˆ {šµ}) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†’ š‘¦ āˆˆ š“)
1918adantll 712 . . . . . . . . . . . 12 (((š‘„ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘„) āˆˆ š“ āˆ§ (2nd ā€˜š‘„) āˆˆ {šµ})) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†’ š‘¦ āˆˆ š“)
20 elsni 4644 . . . . . . . . . . . . . 14 ((2nd ā€˜š‘„) āˆˆ {šµ} ā†’ (2nd ā€˜š‘„) = šµ)
21 eqopi 8007 . . . . . . . . . . . . . . 15 ((š‘„ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘„) = š‘¦ āˆ§ (2nd ā€˜š‘„) = šµ)) ā†’ š‘„ = āŸØš‘¦, šµāŸ©)
2221anass1rs 653 . . . . . . . . . . . . . 14 (((š‘„ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘„) = šµ) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†’ š‘„ = āŸØš‘¦, šµāŸ©)
2320, 22sylanl2 679 . . . . . . . . . . . . 13 (((š‘„ āˆˆ (V Ɨ V) āˆ§ (2nd ā€˜š‘„) āˆˆ {šµ}) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†’ š‘„ = āŸØš‘¦, šµāŸ©)
2423adantlrl 718 . . . . . . . . . . . 12 (((š‘„ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘„) āˆˆ š“ āˆ§ (2nd ā€˜š‘„) āˆˆ {šµ})) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†’ š‘„ = āŸØš‘¦, šµāŸ©)
2519, 24jca 512 . . . . . . . . . . 11 (((š‘„ āˆˆ (V Ɨ V) āˆ§ ((1st ā€˜š‘„) āˆˆ š“ āˆ§ (2nd ā€˜š‘„) āˆˆ {šµ})) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†’ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©))
2615, 25sylanb 581 . . . . . . . . . 10 ((š‘„ āˆˆ (š“ Ɨ {šµ}) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†’ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©))
2726adantl 482 . . . . . . . . 9 ((šµ āˆˆ š‘‰ āˆ§ (š‘„ āˆˆ (š“ Ɨ {šµ}) āˆ§ (1st ā€˜š‘„) = š‘¦)) ā†’ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©))
28 simprr 771 . . . . . . . . . . 11 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ š‘„ = āŸØš‘¦, šµāŸ©)
29 simprl 769 . . . . . . . . . . . 12 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ š‘¦ āˆˆ š“)
30 snidg 4661 . . . . . . . . . . . . 13 (šµ āˆˆ š‘‰ ā†’ šµ āˆˆ {šµ})
3130adantr 481 . . . . . . . . . . . 12 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ šµ āˆˆ {šµ})
3229, 31opelxpd 5713 . . . . . . . . . . 11 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ āŸØš‘¦, šµāŸ© āˆˆ (š“ Ɨ {šµ}))
3328, 32eqeltrd 2833 . . . . . . . . . 10 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ š‘„ āˆˆ (š“ Ɨ {šµ}))
3428fveq2d 6892 . . . . . . . . . . 11 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ (1st ā€˜š‘„) = (1st ā€˜āŸØš‘¦, šµāŸ©))
35 simpl 483 . . . . . . . . . . . 12 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ šµ āˆˆ š‘‰)
36 op1stg 7983 . . . . . . . . . . . 12 ((š‘¦ āˆˆ š“ āˆ§ šµ āˆˆ š‘‰) ā†’ (1st ā€˜āŸØš‘¦, šµāŸ©) = š‘¦)
3729, 35, 36syl2anc 584 . . . . . . . . . . 11 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ (1st ā€˜āŸØš‘¦, šµāŸ©) = š‘¦)
3834, 37eqtrd 2772 . . . . . . . . . 10 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ (1st ā€˜š‘„) = š‘¦)
3933, 38jca 512 . . . . . . . . 9 ((šµ āˆˆ š‘‰ āˆ§ (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)) ā†’ (š‘„ āˆˆ (š“ Ɨ {šµ}) āˆ§ (1st ā€˜š‘„) = š‘¦))
4027, 39impbida 799 . . . . . . . 8 (šµ āˆˆ š‘‰ ā†’ ((š‘„ āˆˆ (š“ Ɨ {šµ}) āˆ§ (1st ā€˜š‘„) = š‘¦) ā†” (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)))
4114, 40bitr3id 284 . . . . . . 7 (šµ āˆˆ š‘‰ ā†’ ((š‘„ āˆˆ (š“ Ɨ {šµ}) āˆ§ š‘„1st š‘¦) ā†” (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)))
427, 41bitrid 282 . . . . . 6 (šµ āˆˆ š‘‰ ā†’ (š‘„(1st ā†¾ (š“ Ɨ {šµ}))š‘¦ ā†” (š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)))
4342mobidv 2543 . . . . 5 (šµ āˆˆ š‘‰ ā†’ (āˆƒ*š‘„ š‘„(1st ā†¾ (š“ Ɨ {šµ}))š‘¦ ā†” āˆƒ*š‘„(š‘¦ āˆˆ š“ āˆ§ š‘„ = āŸØš‘¦, šµāŸ©)))
445, 43mpbiri 257 . . . 4 (šµ āˆˆ š‘‰ ā†’ āˆƒ*š‘„ š‘„(1st ā†¾ (š“ Ɨ {šµ}))š‘¦)
4544alrimiv 1930 . . 3 (šµ āˆˆ š‘‰ ā†’ āˆ€š‘¦āˆƒ*š‘„ š‘„(1st ā†¾ (š“ Ɨ {šµ}))š‘¦)
46 funcnv2 6613 . . 3 (Fun ā—”(1st ā†¾ (š“ Ɨ {šµ})) ā†” āˆ€š‘¦āˆƒ*š‘„ š‘„(1st ā†¾ (š“ Ɨ {šµ}))š‘¦)
4745, 46sylibr 233 . 2 (šµ āˆˆ š‘‰ ā†’ Fun ā—”(1st ā†¾ (š“ Ɨ {šµ})))
48 dff1o3 6836 . 2 ((1st ā†¾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})ā€“1-1-ontoā†’š“ ā†” ((1st ā†¾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})ā€“ontoā†’š“ āˆ§ Fun ā—”(1st ā†¾ (š“ Ɨ {šµ}))))
493, 47, 48sylanbrc 583 1 (šµ āˆˆ š‘‰ ā†’ (1st ā†¾ (š“ Ɨ {šµ})):(š“ Ɨ {šµ})ā€“1-1-ontoā†’š“)
Colors of variables: wff setvar class
Syntax hints:   ā†’ wi 4   ā†” wb 205   āˆ§ wa 396  āˆ€wal 1539   = wceq 1541   āˆˆ wcel 2106  āˆƒ*wmo 2532   ā‰  wne 2940  Vcvv 3474  āˆ…c0 4321  {csn 4627  āŸØcop 4633   class class class wbr 5147   Ɨ cxp 5673  ā—”ccnv 5674   ā†¾ cres 5677  Fun wfun 6534   Fn wfn 6535  ā€“ontoā†’wfo 6538  ā€“1-1-ontoā†’wf1o 6539  ā€˜cfv 6540  1st c1st 7969  2nd c2nd 7970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-1st 7971  df-2nd 7972
This theorem is referenced by:  curry2  8089  domss2  9132  fv1stcnv  34736
  Copyright terms: Public domain W3C validator