Step | Hyp | Ref
| Expression |
1 | | snnzg 4710 |
. . 3
⊢ (𝐵 ∈ 𝑉 → {𝐵} ≠ ∅) |
2 | | fo1stres 7857 |
. . 3
⊢ ({𝐵} ≠ ∅ →
(1st ↾ (𝐴
× {𝐵})):(𝐴 × {𝐵})–onto→𝐴) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝐵 ∈ 𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–onto→𝐴) |
4 | | moeq 3642 |
. . . . . 6
⊢
∃*𝑥 𝑥 = 〈𝑦, 𝐵〉 |
5 | 4 | moani 2553 |
. . . . 5
⊢
∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉) |
6 | | vex 3436 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
7 | 6 | brresi 5900 |
. . . . . . 7
⊢ (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦)) |
8 | | fo1st 7851 |
. . . . . . . . . . 11
⊢
1st :V–onto→V |
9 | | fofn 6690 |
. . . . . . . . . . 11
⊢
(1st :V–onto→V → 1st Fn V) |
10 | 8, 9 | ax-mp 5 |
. . . . . . . . . 10
⊢
1st Fn V |
11 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
12 | | fnbrfvb 6822 |
. . . . . . . . . 10
⊢
((1st Fn V ∧ 𝑥 ∈ V) → ((1st
‘𝑥) = 𝑦 ↔ 𝑥1st 𝑦)) |
13 | 10, 11, 12 | mp2an 689 |
. . . . . . . . 9
⊢
((1st ‘𝑥) = 𝑦 ↔ 𝑥1st 𝑦) |
14 | 13 | anbi2i 623 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st ‘𝑥) = 𝑦) ↔ (𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦)) |
15 | | elxp7 7866 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴 × {𝐵}) ↔ (𝑥 ∈ (V × V) ∧ ((1st
‘𝑥) ∈ 𝐴 ∧ (2nd
‘𝑥) ∈ {𝐵}))) |
16 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢
((1st ‘𝑥) = 𝑦 → ((1st ‘𝑥) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
17 | 16 | biimpac 479 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘𝑥) ∈ 𝐴 ∧ (1st ‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴) |
18 | 17 | adantlr 712 |
. . . . . . . . . . . . 13
⊢
((((1st ‘𝑥) ∈ 𝐴 ∧ (2nd ‘𝑥) ∈ {𝐵}) ∧ (1st ‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴) |
19 | 18 | adantll 711 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ 𝐴 ∧
(2nd ‘𝑥)
∈ {𝐵})) ∧
(1st ‘𝑥) =
𝑦) → 𝑦 ∈ 𝐴) |
20 | | elsni 4578 |
. . . . . . . . . . . . . 14
⊢
((2nd ‘𝑥) ∈ {𝐵} → (2nd ‘𝑥) = 𝐵) |
21 | | eqopi 7867 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
= 𝑦 ∧ (2nd
‘𝑥) = 𝐵)) → 𝑥 = 〈𝑦, 𝐵〉) |
22 | 21 | anass1rs 652 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (V × V) ∧
(2nd ‘𝑥) =
𝐵) ∧ (1st
‘𝑥) = 𝑦) → 𝑥 = 〈𝑦, 𝐵〉) |
23 | 20, 22 | sylanl2 678 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ (V × V) ∧
(2nd ‘𝑥)
∈ {𝐵}) ∧
(1st ‘𝑥) =
𝑦) → 𝑥 = 〈𝑦, 𝐵〉) |
24 | 23 | adantlrl 717 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ 𝐴 ∧
(2nd ‘𝑥)
∈ {𝐵})) ∧
(1st ‘𝑥) =
𝑦) → 𝑥 = 〈𝑦, 𝐵〉) |
25 | 19, 24 | jca 512 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (V × V) ∧
((1st ‘𝑥)
∈ 𝐴 ∧
(2nd ‘𝑥)
∈ {𝐵})) ∧
(1st ‘𝑥) =
𝑦) → (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) |
26 | 15, 25 | sylanb 581 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st ‘𝑥) = 𝑦) → (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) |
27 | 26 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st ‘𝑥) = 𝑦)) → (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) |
28 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝑥 = 〈𝑦, 𝐵〉) |
29 | | simprl 768 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝑦 ∈ 𝐴) |
30 | | snidg 4595 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵}) |
31 | 30 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝐵 ∈ {𝐵}) |
32 | 29, 31 | opelxpd 5627 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 〈𝑦, 𝐵〉 ∈ (𝐴 × {𝐵})) |
33 | 28, 32 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝑥 ∈ (𝐴 × {𝐵})) |
34 | 28 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → (1st ‘𝑥) = (1st
‘〈𝑦, 𝐵〉)) |
35 | | simpl 483 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → 𝐵 ∈ 𝑉) |
36 | | op1stg 7843 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → (1st ‘〈𝑦, 𝐵〉) = 𝑦) |
37 | 29, 35, 36 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → (1st
‘〈𝑦, 𝐵〉) = 𝑦) |
38 | 34, 37 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → (1st ‘𝑥) = 𝑦) |
39 | 33, 38 | jca 512 |
. . . . . . . . 9
⊢ ((𝐵 ∈ 𝑉 ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉)) → (𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st ‘𝑥) = 𝑦)) |
40 | 27, 39 | impbida 798 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑉 → ((𝑥 ∈ (𝐴 × {𝐵}) ∧ (1st ‘𝑥) = 𝑦) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉))) |
41 | 14, 40 | bitr3id 285 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑉 → ((𝑥 ∈ (𝐴 × {𝐵}) ∧ 𝑥1st 𝑦) ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉))) |
42 | 7, 41 | bitrid 282 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → (𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ (𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉))) |
43 | 42 | mobidv 2549 |
. . . . 5
⊢ (𝐵 ∈ 𝑉 → (∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦 ↔ ∃*𝑥(𝑦 ∈ 𝐴 ∧ 𝑥 = 〈𝑦, 𝐵〉))) |
44 | 5, 43 | mpbiri 257 |
. . . 4
⊢ (𝐵 ∈ 𝑉 → ∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦) |
45 | 44 | alrimiv 1930 |
. . 3
⊢ (𝐵 ∈ 𝑉 → ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦) |
46 | | funcnv2 6502 |
. . 3
⊢ (Fun
◡(1st ↾ (𝐴 × {𝐵})) ↔ ∀𝑦∃*𝑥 𝑥(1st ↾ (𝐴 × {𝐵}))𝑦) |
47 | 45, 46 | sylibr 233 |
. 2
⊢ (𝐵 ∈ 𝑉 → Fun ◡(1st ↾ (𝐴 × {𝐵}))) |
48 | | dff1o3 6722 |
. 2
⊢
((1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto→𝐴 ↔ ((1st ↾
(𝐴 × {𝐵})):(𝐴 × {𝐵})–onto→𝐴 ∧ Fun ◡(1st ↾ (𝐴 × {𝐵})))) |
49 | 3, 47, 48 | sylanbrc 583 |
1
⊢ (𝐵 ∈ 𝑉 → (1st ↾ (𝐴 × {𝐵})):(𝐴 × {𝐵})–1-1-onto→𝐴) |