| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > n0nsnel | Structured version Visualization version GIF version | ||
| Description: If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) (Revised by Thierry Arnoux, 28-May-2025.) |
| Ref | Expression |
|---|---|
| n0nsnel | ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i 4341 | . . . . . 6 ⊢ (𝐶 ∈ 𝐵 → 𝐵 ≠ ∅) | |
| 2 | eqsn 4829 | . . . . . 6 ⊢ (𝐵 ≠ ∅ → (𝐵 = {𝐴} ↔ ∀𝑥 ∈ 𝐵 𝑥 = 𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐶 ∈ 𝐵 → (𝐵 = {𝐴} ↔ ∀𝑥 ∈ 𝐵 𝑥 = 𝐴)) |
| 4 | 3 | biimprd 248 | . . . 4 ⊢ (𝐶 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝑥 = 𝐴 → 𝐵 = {𝐴})) |
| 5 | 4 | con3d 152 | . . 3 ⊢ (𝐶 ∈ 𝐵 → (¬ 𝐵 = {𝐴} → ¬ ∀𝑥 ∈ 𝐵 𝑥 = 𝐴)) |
| 6 | df-ne 2941 | . . 3 ⊢ (𝐵 ≠ {𝐴} ↔ ¬ 𝐵 = {𝐴}) | |
| 7 | nne 2944 | . . . . . . 7 ⊢ (¬ 𝑥 ≠ 𝐴 ↔ 𝑥 = 𝐴) | |
| 8 | 7 | bicomi 224 | . . . . . 6 ⊢ (𝑥 = 𝐴 ↔ ¬ 𝑥 ≠ 𝐴) |
| 9 | 8 | ralbii 3093 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ≠ 𝐴) |
| 10 | ralnex 3072 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥 ≠ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) | |
| 11 | 9, 10 | bitri 275 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
| 12 | 11 | con2bii 357 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ¬ ∀𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| 13 | 5, 6, 12 | 3imtr4g 296 | . 2 ⊢ (𝐶 ∈ 𝐵 → (𝐵 ≠ {𝐴} → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴)) |
| 14 | 13 | imp 406 | 1 ⊢ ((𝐶 ∈ 𝐵 ∧ 𝐵 ≠ {𝐴}) → ∃𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4333 {csn 4626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3482 df-dif 3954 df-ss 3968 df-nul 4334 df-sn 4627 |
| This theorem is referenced by: krullndrng 33509 |
| Copyright terms: Public domain | W3C validator |