Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0nsnel Structured version   Visualization version   GIF version

Theorem n0nsnel 32495
Description: If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) (Revised by Thierry Arnoux, 28-May-2025.)
Assertion
Ref Expression
n0nsnel ((𝐶𝐵𝐵 ≠ {𝐴}) → ∃𝑥𝐵 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem n0nsnel
StepHypRef Expression
1 ne0i 4288 . . . . . 6 (𝐶𝐵𝐵 ≠ ∅)
2 eqsn 4778 . . . . . 6 (𝐵 ≠ ∅ → (𝐵 = {𝐴} ↔ ∀𝑥𝐵 𝑥 = 𝐴))
31, 2syl 17 . . . . 5 (𝐶𝐵 → (𝐵 = {𝐴} ↔ ∀𝑥𝐵 𝑥 = 𝐴))
43biimprd 248 . . . 4 (𝐶𝐵 → (∀𝑥𝐵 𝑥 = 𝐴𝐵 = {𝐴}))
54con3d 152 . . 3 (𝐶𝐵 → (¬ 𝐵 = {𝐴} → ¬ ∀𝑥𝐵 𝑥 = 𝐴))
6 df-ne 2929 . . 3 (𝐵 ≠ {𝐴} ↔ ¬ 𝐵 = {𝐴})
7 nne 2932 . . . . . . 7 𝑥𝐴𝑥 = 𝐴)
87bicomi 224 . . . . . 6 (𝑥 = 𝐴 ↔ ¬ 𝑥𝐴)
98ralbii 3078 . . . . 5 (∀𝑥𝐵 𝑥 = 𝐴 ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
10 ralnex 3058 . . . . 5 (∀𝑥𝐵 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥𝐵 𝑥𝐴)
119, 10bitri 275 . . . 4 (∀𝑥𝐵 𝑥 = 𝐴 ↔ ¬ ∃𝑥𝐵 𝑥𝐴)
1211con2bii 357 . . 3 (∃𝑥𝐵 𝑥𝐴 ↔ ¬ ∀𝑥𝐵 𝑥 = 𝐴)
135, 6, 123imtr4g 296 . 2 (𝐶𝐵 → (𝐵 ≠ {𝐴} → ∃𝑥𝐵 𝑥𝐴))
1413imp 406 1 ((𝐶𝐵𝐵 ≠ {𝐴}) → ∃𝑥𝐵 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  c0 4280  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-ss 3914  df-nul 4281  df-sn 4574
This theorem is referenced by:  krullndrng  33446
  Copyright terms: Public domain W3C validator