Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0nsnel Structured version   Visualization version   GIF version

Theorem n0nsnel 32444
Description: If a class with one element is not a singleton, there is at least another element in this class. (Contributed by AV, 6-Mar-2025.) (Revised by Thierry Arnoux, 28-May-2025.)
Assertion
Ref Expression
n0nsnel ((𝐶𝐵𝐵 ≠ {𝐴}) → ∃𝑥𝐵 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem n0nsnel
StepHypRef Expression
1 ne0i 4304 . . . . . 6 (𝐶𝐵𝐵 ≠ ∅)
2 eqsn 4793 . . . . . 6 (𝐵 ≠ ∅ → (𝐵 = {𝐴} ↔ ∀𝑥𝐵 𝑥 = 𝐴))
31, 2syl 17 . . . . 5 (𝐶𝐵 → (𝐵 = {𝐴} ↔ ∀𝑥𝐵 𝑥 = 𝐴))
43biimprd 248 . . . 4 (𝐶𝐵 → (∀𝑥𝐵 𝑥 = 𝐴𝐵 = {𝐴}))
54con3d 152 . . 3 (𝐶𝐵 → (¬ 𝐵 = {𝐴} → ¬ ∀𝑥𝐵 𝑥 = 𝐴))
6 df-ne 2926 . . 3 (𝐵 ≠ {𝐴} ↔ ¬ 𝐵 = {𝐴})
7 nne 2929 . . . . . . 7 𝑥𝐴𝑥 = 𝐴)
87bicomi 224 . . . . . 6 (𝑥 = 𝐴 ↔ ¬ 𝑥𝐴)
98ralbii 3075 . . . . 5 (∀𝑥𝐵 𝑥 = 𝐴 ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
10 ralnex 3055 . . . . 5 (∀𝑥𝐵 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥𝐵 𝑥𝐴)
119, 10bitri 275 . . . 4 (∀𝑥𝐵 𝑥 = 𝐴 ↔ ¬ ∃𝑥𝐵 𝑥𝐴)
1211con2bii 357 . . 3 (∃𝑥𝐵 𝑥𝐴 ↔ ¬ ∀𝑥𝐵 𝑥 = 𝐴)
135, 6, 123imtr4g 296 . 2 (𝐶𝐵 → (𝐵 ≠ {𝐴} → ∃𝑥𝐵 𝑥𝐴))
1413imp 406 1 ((𝐶𝐵𝐵 ≠ {𝐴}) → ∃𝑥𝐵 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4296  {csn 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-v 3449  df-dif 3917  df-ss 3931  df-nul 4297  df-sn 4590
This theorem is referenced by:  krullndrng  33452
  Copyright terms: Public domain W3C validator