Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelbrnel Structured version   Visualization version   GIF version

Theorem nelbrnel 47281
Description: A set is related to another set by the negated membership relation iff it is not a member of the other set. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
nelbrnel ((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵𝐴𝐵))

Proof of Theorem nelbrnel
StepHypRef Expression
1 nelbr 47279 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴𝐵))
2 df-nel 3031 . 2 (𝐴𝐵 ↔ ¬ 𝐴𝐵)
31, 2bitr4di 289 1 ((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wnel 3030   class class class wbr 5110   _∉ cnelbr 47276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nel 3031  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-nelbr 47277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator