Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelbr | Structured version Visualization version GIF version |
Description: The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021.) |
Ref | Expression |
---|---|
nelbr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12 2828 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
2 | 1 | notbid 318 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (¬ 𝑥 ∈ 𝑦 ↔ ¬ 𝐴 ∈ 𝐵)) |
3 | df-nelbr 44764 | . 2 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | |
4 | 2, 3 | brabga 5447 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 _∉ cnelbr 44763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-nelbr 44764 |
This theorem is referenced by: nelbrim 44767 nelbrnel 44768 |
Copyright terms: Public domain | W3C validator |