Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelbr Structured version   Visualization version   GIF version

Theorem nelbr 47178
Description: The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
nelbr ((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴𝐵))

Proof of Theorem nelbr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq12 2834 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
21notbid 318 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝑥𝑦 ↔ ¬ 𝐴𝐵))
3 df-nelbr 47176 . 2 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
42, 3brabga 5553 1 ((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166   _∉ cnelbr 47175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-nelbr 47176
This theorem is referenced by:  nelbrim  47179  nelbrnel  47180
  Copyright terms: Public domain W3C validator