| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelbr | Structured version Visualization version GIF version | ||
| Description: The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021.) |
| Ref | Expression |
|---|---|
| nelbr | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12 2819 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∈ 𝑦 ↔ 𝐴 ∈ 𝐵)) | |
| 2 | 1 | notbid 318 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (¬ 𝑥 ∈ 𝑦 ↔ ¬ 𝐴 ∈ 𝐵)) |
| 3 | df-nelbr 47277 | . 2 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | |
| 4 | 2, 3 | brabga 5497 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 _∉ cnelbr 47276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-nelbr 47277 |
| This theorem is referenced by: nelbrim 47280 nelbrnel 47281 |
| Copyright terms: Public domain | W3C validator |