Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelbr Structured version   Visualization version   GIF version

Theorem nelbr 47388
Description: The binary relation of a set not being a member of another set. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
nelbr ((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴𝐵))

Proof of Theorem nelbr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq12 2823 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
21notbid 318 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → (¬ 𝑥𝑦 ↔ ¬ 𝐴𝐵))
3 df-nelbr 47386 . 2 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
42, 3brabga 5479 1 ((𝐴𝑉𝐵𝑊) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095   _∉ cnelbr 47385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-nelbr 47386
This theorem is referenced by:  nelbrim  47389  nelbrnel  47390
  Copyright terms: Public domain W3C validator