Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelbrim | Structured version Visualization version GIF version |
Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if 𝐴 is a proper class, then ¬ 𝐴 ∈ 𝐵 would be true, but not 𝐴 _∉ 𝐵. (Contributed by AV, 26-Dec-2021.) |
Ref | Expression |
---|---|
nelbrim | ⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nelbr 44651 | . . . 4 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | |
2 | 1 | relopabiv 5719 | . . 3 ⊢ Rel _∉ |
3 | 2 | brrelex12i 5633 | . 2 ⊢ (𝐴 _∉ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | nelbr 44653 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) | |
5 | 4 | biimpd 228 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵)) |
6 | 3, 5 | mpcom 38 | 1 ⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 _∉ cnelbr 44650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-nelbr 44651 |
This theorem is referenced by: nelbrnelim 44656 |
Copyright terms: Public domain | W3C validator |