Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelbrim Structured version   Visualization version   GIF version

Theorem nelbrim 46282
Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if 𝐴 is a proper class, then ¬ 𝐴𝐵 would be true, but not 𝐴 _∉ 𝐵. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
nelbrim (𝐴 _∉ 𝐵 → ¬ 𝐴𝐵)

Proof of Theorem nelbrim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nelbr 46279 . . . 4 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
21relopabiv 5820 . . 3 Rel _∉
32brrelex12i 5731 . 2 (𝐴 _∉ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 nelbr 46281 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴𝐵))
54biimpd 228 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 _∉ 𝐵 → ¬ 𝐴𝐵))
63, 5mpcom 38 1 (𝐴 _∉ 𝐵 → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2105  Vcvv 3473   class class class wbr 5148   _∉ cnelbr 46278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-nelbr 46279
This theorem is referenced by:  nelbrnelim  46284
  Copyright terms: Public domain W3C validator