Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelbrim Structured version   Visualization version   GIF version

Theorem nelbrim 47252
Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if 𝐴 is a proper class, then ¬ 𝐴𝐵 would be true, but not 𝐴 _∉ 𝐵. (Contributed by AV, 26-Dec-2021.)
Assertion
Ref Expression
nelbrim (𝐴 _∉ 𝐵 → ¬ 𝐴𝐵)

Proof of Theorem nelbrim
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nelbr 47249 . . . 4 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
21relopabiv 5799 . . 3 Rel _∉
32brrelex12i 5709 . 2 (𝐴 _∉ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
4 nelbr 47251 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴𝐵))
54biimpd 229 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 _∉ 𝐵 → ¬ 𝐴𝐵))
63, 5mpcom 38 1 (𝐴 _∉ 𝐵 → ¬ 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  Vcvv 3459   class class class wbr 5119   _∉ cnelbr 47248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-nelbr 47249
This theorem is referenced by:  nelbrnelim  47254
  Copyright terms: Public domain W3C validator