| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelbrim | Structured version Visualization version GIF version | ||
| Description: If a set is related to another set by the negated membership relation, then it is not a member of the other set. The other direction of the implication is not generally true, because if 𝐴 is a proper class, then ¬ 𝐴 ∈ 𝐵 would be true, but not 𝐴 _∉ 𝐵. (Contributed by AV, 26-Dec-2021.) |
| Ref | Expression |
|---|---|
| nelbrim | ⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nelbr 47371 | . . . 4 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | |
| 2 | 1 | relopabiv 5759 | . . 3 ⊢ Rel _∉ |
| 3 | 2 | brrelex12i 5669 | . 2 ⊢ (𝐴 _∉ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 4 | nelbr 47373 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 _∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵)) | |
| 5 | 4 | biimpd 229 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵)) |
| 6 | 3, 5 | mpcom 38 | 1 ⊢ (𝐴 _∉ 𝐵 → ¬ 𝐴 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 _∉ cnelbr 47370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-nelbr 47371 |
| This theorem is referenced by: nelbrnelim 47376 |
| Copyright terms: Public domain | W3C validator |