| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 4 | 1, 3 | neleqtrd 2850 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: csbxp 5738 omopth2 8548 wrdlndm 14495 mreexd 17603 mreexmrid 17604 psgnunilem2 19425 lspindp4 21047 lsppratlem3 21059 frlmlbs 21706 mdetralt 22495 lebnumlem1 24860 mideulem2 28661 opphllem 28662 structiedg0val 28949 snstriedgval 28965 1hevtxdg0 29433 cyc2fvx 33091 cyc3co2 33097 elrgspnlem4 33196 lindssn 33349 qqhval2lem 33971 qqhf 33976 unbdqndv1 36496 lindsenlbs 37609 mapdindp2 41715 mapdindp4 41717 mapdh6dN 41733 hdmap1l6d 41807 tfsconcatb0 43333 clsk1indlem1 44034 r1rankcld 44220 fnchoice 45023 stoweidlem34 46032 stoweidlem59 46057 dirkercncflem2 46102 fourierdlem42 46147 iundjiunlem 46457 meaiininclem 46484 |
| Copyright terms: Public domain | W3C validator |