| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 4 | 1, 3 | neleqtrd 2850 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: csbxp 5730 omopth2 8525 wrdlndm 14471 mreexd 17579 mreexmrid 17580 psgnunilem2 19401 lspindp4 21023 lsppratlem3 21035 frlmlbs 21682 mdetralt 22471 lebnumlem1 24836 mideulem2 28637 opphllem 28638 structiedg0val 28925 snstriedgval 28941 1hevtxdg0 29409 cyc2fvx 33064 cyc3co2 33070 elrgspnlem4 33169 lindssn 33322 qqhval2lem 33944 qqhf 33949 unbdqndv1 36469 lindsenlbs 37582 mapdindp2 41688 mapdindp4 41690 mapdh6dN 41706 hdmap1l6d 41780 tfsconcatb0 43306 clsk1indlem1 44007 r1rankcld 44193 fnchoice 44996 stoweidlem34 46005 stoweidlem59 46030 dirkercncflem2 46075 fourierdlem42 46120 iundjiunlem 46430 meaiininclem 46457 |
| Copyright terms: Public domain | W3C validator |