Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
4 | 1, 3 | neleqtrd 2860 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: csbxp 5686 omopth2 8415 wrdlndm 14233 mreexd 17351 mreexmrid 17352 psgnunilem2 19103 lspindp4 20399 lsppratlem3 20411 frlmlbs 21004 mdetralt 21757 lebnumlem1 24124 mideulem2 27095 opphllem 27096 structiedg0val 27392 snstriedgval 27408 1hevtxdg0 27872 cyc2fvx 31401 cyc3co2 31407 lindssn 31573 qqhval2lem 31931 qqhf 31936 unbdqndv1 34688 lindsenlbs 35772 mapdindp2 39735 mapdindp4 39737 mapdh6dN 39753 hdmap1l6d 39827 clsk1indlem1 41655 r1rankcld 41849 fnchoice 42572 stoweidlem34 43575 stoweidlem59 43600 dirkercncflem2 43645 fourierdlem42 43690 iundjiunlem 43997 meaiininclem 44024 |
Copyright terms: Public domain | W3C validator |