![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqcomd 2741 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
4 | 1, 3 | neleqtrd 2861 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: csbxp 5788 omopth2 8621 wrdlndm 14565 mreexd 17687 mreexmrid 17688 psgnunilem2 19528 lspindp4 21157 lsppratlem3 21169 frlmlbs 21835 mdetralt 22630 lebnumlem1 25007 mideulem2 28757 opphllem 28758 structiedg0val 29054 snstriedgval 29070 1hevtxdg0 29538 cyc2fvx 33137 cyc3co2 33143 elrgspnlem4 33235 lindssn 33386 qqhval2lem 33944 qqhf 33949 unbdqndv1 36491 lindsenlbs 37602 mapdindp2 41704 mapdindp4 41706 mapdh6dN 41722 hdmap1l6d 41796 tfsconcatb0 43334 clsk1indlem1 44035 r1rankcld 44227 fnchoice 44967 stoweidlem34 45990 stoweidlem59 46015 dirkercncflem2 46060 fourierdlem42 46105 iundjiunlem 46415 meaiininclem 46442 |
Copyright terms: Public domain | W3C validator |