![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqcomd 2732 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
4 | 1, 3 | neleqtrd 2848 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 ∈ wcel 2099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1775 df-cleq 2718 df-clel 2803 |
This theorem is referenced by: csbxp 5781 omopth2 8614 wrdlndm 14538 mreexd 17655 mreexmrid 17656 psgnunilem2 19493 lspindp4 21118 lsppratlem3 21130 frlmlbs 21795 mdetralt 22601 lebnumlem1 24978 mideulem2 28661 opphllem 28662 structiedg0val 28958 snstriedgval 28974 1hevtxdg0 29442 cyc2fvx 33012 cyc3co2 33018 lindssn 33253 qqhval2lem 33796 qqhf 33801 unbdqndv1 36211 lindsenlbs 37316 mapdindp2 41420 mapdindp4 41422 mapdh6dN 41438 hdmap1l6d 41512 tfsconcatb0 43010 clsk1indlem1 43712 r1rankcld 43905 fnchoice 44628 stoweidlem34 45655 stoweidlem59 45680 dirkercncflem2 45725 fourierdlem42 45770 iundjiunlem 46080 meaiininclem 46107 |
Copyright terms: Public domain | W3C validator |