![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqcomd 2736 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
4 | 1, 3 | neleqtrd 2853 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: csbxp 5774 omopth2 8586 wrdlndm 14484 mreexd 17590 mreexmrid 17591 psgnunilem2 19404 lspindp4 20895 lsppratlem3 20907 frlmlbs 21571 mdetralt 22330 lebnumlem1 24707 mideulem2 28252 opphllem 28253 structiedg0val 28549 snstriedgval 28565 1hevtxdg0 29029 cyc2fvx 32563 cyc3co2 32569 lindssn 32768 qqhval2lem 33259 qqhf 33264 unbdqndv1 35687 lindsenlbs 36786 mapdindp2 40895 mapdindp4 40897 mapdh6dN 40913 hdmap1l6d 40987 tfsconcatb0 42396 clsk1indlem1 43098 r1rankcld 43292 fnchoice 44015 stoweidlem34 45048 stoweidlem59 45073 dirkercncflem2 45118 fourierdlem42 45163 iundjiunlem 45473 meaiininclem 45500 |
Copyright terms: Public domain | W3C validator |