![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqcomd 2746 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
4 | 1, 3 | neleqtrd 2866 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: csbxp 5799 omopth2 8640 wrdlndm 14578 mreexd 17700 mreexmrid 17701 psgnunilem2 19537 lspindp4 21162 lsppratlem3 21174 frlmlbs 21840 mdetralt 22635 lebnumlem1 25012 mideulem2 28760 opphllem 28761 structiedg0val 29057 snstriedgval 29073 1hevtxdg0 29541 cyc2fvx 33127 cyc3co2 33133 lindssn 33371 qqhval2lem 33927 qqhf 33932 unbdqndv1 36474 lindsenlbs 37575 mapdindp2 41678 mapdindp4 41680 mapdh6dN 41696 hdmap1l6d 41770 tfsconcatb0 43306 clsk1indlem1 44007 r1rankcld 44200 fnchoice 44929 stoweidlem34 45955 stoweidlem59 45980 dirkercncflem2 46025 fourierdlem42 46070 iundjiunlem 46380 meaiininclem 46407 |
Copyright terms: Public domain | W3C validator |