| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eqcomd 2742 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 4 | 1, 3 | neleqtrd 2857 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: csbxp 5759 omopth2 8601 wrdlndm 14553 mreexd 17659 mreexmrid 17660 psgnunilem2 19481 lspindp4 21103 lsppratlem3 21115 frlmlbs 21762 mdetralt 22551 lebnumlem1 24916 mideulem2 28718 opphllem 28719 structiedg0val 29006 snstriedgval 29022 1hevtxdg0 29490 cyc2fvx 33150 cyc3co2 33156 elrgspnlem4 33245 lindssn 33398 qqhval2lem 34017 qqhf 34022 unbdqndv1 36531 lindsenlbs 37644 mapdindp2 41745 mapdindp4 41747 mapdh6dN 41763 hdmap1l6d 41837 tfsconcatb0 43335 clsk1indlem1 44036 r1rankcld 44222 fnchoice 45020 stoweidlem34 46030 stoweidlem59 46055 dirkercncflem2 46100 fourierdlem42 46145 iundjiunlem 46455 meaiininclem 46482 |
| Copyright terms: Public domain | W3C validator |