| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eqcomd 2735 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 4 | 1, 3 | neleqtrd 2850 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: csbxp 5719 omopth2 8502 wrdlndm 14437 mreexd 17548 mreexmrid 17549 psgnunilem2 19374 lspindp4 21044 lsppratlem3 21056 frlmlbs 21704 mdetralt 22493 lebnumlem1 24858 mideulem2 28679 opphllem 28680 structiedg0val 28967 snstriedgval 28983 1hevtxdg0 29451 cyc2fvx 33076 cyc3co2 33082 elrgspnlem4 33185 lindssn 33315 qqhval2lem 33948 qqhf 33953 unbdqndv1 36482 lindsenlbs 37595 mapdindp2 41700 mapdindp4 41702 mapdh6dN 41718 hdmap1l6d 41792 tfsconcatb0 43317 clsk1indlem1 44018 r1rankcld 44204 fnchoice 45007 stoweidlem34 46015 stoweidlem59 46040 dirkercncflem2 46085 fourierdlem42 46130 iundjiunlem 46440 meaiininclem 46467 |
| Copyright terms: Public domain | W3C validator |