Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqcomd 2743 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
4 | 1, 3 | neleqtrd 2859 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-cleq 2729 df-clel 2815 |
This theorem is referenced by: csbxp 5724 omopth2 8495 wrdlndm 14342 mreexd 17453 mreexmrid 17454 psgnunilem2 19204 lspindp4 20509 lsppratlem3 20521 frlmlbs 21114 mdetralt 21867 lebnumlem1 24234 mideulem2 27450 opphllem 27451 structiedg0val 27747 snstriedgval 27763 1hevtxdg0 28227 cyc2fvx 31752 cyc3co2 31758 lindssn 31934 qqhval2lem 32293 qqhf 32298 unbdqndv1 34827 lindsenlbs 35928 mapdindp2 40040 mapdindp4 40042 mapdh6dN 40058 hdmap1l6d 40132 clsk1indlem1 42028 r1rankcld 42222 fnchoice 42945 stoweidlem34 43963 stoweidlem59 43988 dirkercncflem2 44033 fourierdlem42 44078 iundjiunlem 44386 meaiininclem 44413 |
Copyright terms: Public domain | W3C validator |