![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqcomd 2739 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
4 | 1, 3 | neleqtrd 2856 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-clel 2811 |
This theorem is referenced by: csbxp 5776 omopth2 8584 wrdlndm 14480 mreexd 17586 mreexmrid 17587 psgnunilem2 19363 lspindp4 20750 lsppratlem3 20762 frlmlbs 21352 mdetralt 22110 lebnumlem1 24477 mideulem2 27985 opphllem 27986 structiedg0val 28282 snstriedgval 28298 1hevtxdg0 28762 cyc2fvx 32293 cyc3co2 32299 lindssn 32494 qqhval2lem 32961 qqhf 32966 unbdqndv1 35384 lindsenlbs 36483 mapdindp2 40592 mapdindp4 40594 mapdh6dN 40610 hdmap1l6d 40684 tfsconcatb0 42094 clsk1indlem1 42796 r1rankcld 42990 fnchoice 43713 stoweidlem34 44750 stoweidlem59 44775 dirkercncflem2 44820 fourierdlem42 44865 iundjiunlem 45175 meaiininclem 45202 |
Copyright terms: Public domain | W3C validator |