Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
Ref | Expression |
---|---|
neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | eqcomd 2744 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
4 | 1, 3 | neleqtrd 2860 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: csbxp 5676 omopth2 8377 wrdlndm 14161 mreexd 17268 mreexmrid 17269 psgnunilem2 19018 lspindp4 20314 lsppratlem3 20326 frlmlbs 20914 mdetralt 21665 lebnumlem1 24030 mideulem2 26999 opphllem 27000 structiedg0val 27295 snstriedgval 27311 1hevtxdg0 27775 cyc2fvx 31303 cyc3co2 31309 lindssn 31475 qqhval2lem 31831 qqhf 31836 unbdqndv1 34615 lindsenlbs 35699 mapdindp2 39662 mapdindp4 39664 mapdh6dN 39680 hdmap1l6d 39754 clsk1indlem1 41544 r1rankcld 41738 fnchoice 42461 stoweidlem34 43465 stoweidlem59 43490 dirkercncflem2 43535 fourierdlem42 43580 iundjiunlem 43887 meaiininclem 43914 |
Copyright terms: Public domain | W3C validator |