| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neleqtrrd | Structured version Visualization version GIF version | ||
| Description: If a class is not an element of another class, it is also not an element of an equal class. Deduction form. (Contributed by David Moews, 1-May-2017.) (Proof shortened by Wolf Lammen, 13-Nov-2019.) |
| Ref | Expression |
|---|---|
| neleqtrrd.1 | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) |
| neleqtrrd.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| neleqtrrd | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleqtrrd.1 | . 2 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) | |
| 2 | neleqtrrd.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | eqcomd 2737 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 4 | 1, 3 | neleqtrd 2853 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: csbxp 5711 omopth2 8494 wrdlndm 14432 mreexd 17543 mreexmrid 17544 psgnunilem2 19402 lspindp4 21069 lsppratlem3 21081 frlmlbs 21729 mdetralt 22518 lebnumlem1 24882 mideulem2 28707 opphllem 28708 structiedg0val 28995 snstriedgval 29011 1hevtxdg0 29479 cyc2fvx 33095 cyc3co2 33101 elrgspnlem4 33204 lindssn 33335 qqhval2lem 33986 qqhf 33991 unbdqndv1 36542 lindsenlbs 37655 mapdindp2 41760 mapdindp4 41762 mapdh6dN 41778 hdmap1l6d 41852 tfsconcatb0 43377 clsk1indlem1 44078 r1rankcld 44264 fnchoice 45066 stoweidlem34 46072 stoweidlem59 46097 dirkercncflem2 46142 fourierdlem42 46187 iundjiunlem 46497 meaiininclem 46524 |
| Copyright terms: Public domain | W3C validator |