Step | Hyp | Ref
| Expression |
1 | | df-ne 2943 |
. . . . 5
⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) |
2 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) →
(𝑅1‘𝐴) ∈ Tarski) |
3 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On) |
4 | | onwf 9519 |
. . . . . . . . . . . . . . . 16
⊢ On
⊆ ∪ (𝑅1 “
On) |
5 | 4 | sseli 3913 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On → 𝐴 ∈ ∪ (𝑅1 “ On)) |
6 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(rank‘𝐴) =
(rank‘𝐴) |
7 | | rankr1c 9510 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
((rank‘𝐴) =
(rank‘𝐴) ↔
(¬ 𝐴 ∈
(𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴))))) |
8 | 6, 7 | mpbii 232 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (¬ 𝐴 ∈
(𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴)))) |
9 | 5, 8 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On → (¬ 𝐴 ∈
(𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴)))) |
10 | 9 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → ¬ 𝐴 ∈
(𝑅1‘(rank‘𝐴))) |
11 | | r1fnon 9456 |
. . . . . . . . . . . . . . . . 17
⊢
𝑅1 Fn On |
12 | 11 | fndmi 6521 |
. . . . . . . . . . . . . . . 16
⊢ dom
𝑅1 = On |
13 | 12 | eleq2i 2830 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ dom
𝑅1 ↔ 𝐴 ∈ On) |
14 | | rankonid 9518 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ dom
𝑅1 ↔ (rank‘𝐴) = 𝐴) |
15 | 13, 14 | bitr3i 276 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ On ↔
(rank‘𝐴) = 𝐴) |
16 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢
((rank‘𝐴) =
𝐴 →
(𝑅1‘(rank‘𝐴)) = (𝑅1‘𝐴)) |
17 | 15, 16 | sylbi 216 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On →
(𝑅1‘(rank‘𝐴)) = (𝑅1‘𝐴)) |
18 | 10, 17 | neleqtrd 2860 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ On → ¬ 𝐴 ∈
(𝑅1‘𝐴)) |
19 | 18 | adantl 481 |
. . . . . . . . . . 11
⊢
(((𝑅1‘𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → ¬ 𝐴 ∈ (𝑅1‘𝐴)) |
20 | | onssr1 9520 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ dom
𝑅1 → 𝐴 ⊆ (𝑅1‘𝐴)) |
21 | 13, 20 | sylbir 234 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → 𝐴 ⊆
(𝑅1‘𝐴)) |
22 | | tsken 10441 |
. . . . . . . . . . . . 13
⊢
(((𝑅1‘𝐴) ∈ Tarski ∧ 𝐴 ⊆ (𝑅1‘𝐴)) → (𝐴 ≈ (𝑅1‘𝐴) ∨ 𝐴 ∈ (𝑅1‘𝐴))) |
23 | 21, 22 | sylan2 592 |
. . . . . . . . . . . 12
⊢
(((𝑅1‘𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝐴 ≈ (𝑅1‘𝐴) ∨ 𝐴 ∈ (𝑅1‘𝐴))) |
24 | 23 | ord 860 |
. . . . . . . . . . 11
⊢
(((𝑅1‘𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (¬ 𝐴 ≈ (𝑅1‘𝐴) → 𝐴 ∈ (𝑅1‘𝐴))) |
25 | 19, 24 | mt3d 148 |
. . . . . . . . . 10
⊢
(((𝑅1‘𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → 𝐴 ≈ (𝑅1‘𝐴)) |
26 | 2, 3, 25 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ (𝑅1‘𝐴)) |
27 | | carden2b 9656 |
. . . . . . . . 9
⊢ (𝐴 ≈
(𝑅1‘𝐴) → (card‘𝐴) =
(card‘(𝑅1‘𝐴))) |
28 | 26, 27 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) =
(card‘(𝑅1‘𝐴))) |
29 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) → 𝐴 ∈ On) |
30 | | simplr 765 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝐴) ∈
Tarski) |
31 | 21 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) → 𝐴 ⊆ (𝑅1‘𝐴)) |
32 | 31 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝑅1‘𝐴)) |
33 | | tsksdom 10443 |
. . . . . . . . . . . . 13
⊢
(((𝑅1‘𝐴) ∈ Tarski ∧ 𝑥 ∈ (𝑅1‘𝐴)) → 𝑥 ≺ (𝑅1‘𝐴)) |
34 | 30, 32, 33 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≺ (𝑅1‘𝐴)) |
35 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ On) |
36 | 25 | ensymd 8746 |
. . . . . . . . . . . . 13
⊢
(((𝑅1‘𝐴) ∈ Tarski ∧ 𝐴 ∈ On) →
(𝑅1‘𝐴) ≈ 𝐴) |
37 | 30, 35, 36 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝑥 ∈ 𝐴) → (𝑅1‘𝐴) ≈ 𝐴) |
38 | | sdomentr 8847 |
. . . . . . . . . . . 12
⊢ ((𝑥 ≺
(𝑅1‘𝐴) ∧ (𝑅1‘𝐴) ≈ 𝐴) → 𝑥 ≺ 𝐴) |
39 | 34, 37, 38 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≺ 𝐴) |
40 | 39 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) → ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴) |
41 | | iscard 9664 |
. . . . . . . . . 10
⊢
((card‘𝐴) =
𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ 𝐴)) |
42 | 29, 40, 41 | sylanbrc 582 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) → (card‘𝐴) = 𝐴) |
43 | 42 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = 𝐴) |
44 | 28, 43 | eqtr3d 2780 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) →
(card‘(𝑅1‘𝐴)) = 𝐴) |
45 | | r10 9457 |
. . . . . . . . . . 11
⊢
(𝑅1‘∅) = ∅ |
46 | | on0eln0 6306 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ On → (∅
∈ 𝐴 ↔ 𝐴 ≠ ∅)) |
47 | 46 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅
∈ 𝐴) |
48 | | r1sdom 9463 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ On ∧ ∅ ∈
𝐴) →
(𝑅1‘∅) ≺
(𝑅1‘𝐴)) |
49 | 47, 48 | syldan 590 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) →
(𝑅1‘∅) ≺
(𝑅1‘𝐴)) |
50 | 45, 49 | eqbrtrrid 5106 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅
≺ (𝑅1‘𝐴)) |
51 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(𝑅1‘𝐴) ∈ V |
52 | 51 | 0sdom 8844 |
. . . . . . . . . 10
⊢ (∅
≺ (𝑅1‘𝐴) ↔ (𝑅1‘𝐴) ≠ ∅) |
53 | 50, 52 | sylib 217 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) →
(𝑅1‘𝐴) ≠ ∅) |
54 | 53 | adantlr 711 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) →
(𝑅1‘𝐴) ≠ ∅) |
55 | | tskcard 10468 |
. . . . . . . 8
⊢
(((𝑅1‘𝐴) ∈ Tarski ∧
(𝑅1‘𝐴) ≠ ∅) →
(card‘(𝑅1‘𝐴)) ∈ Inacc) |
56 | 2, 54, 55 | syl2anc 583 |
. . . . . . 7
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) →
(card‘(𝑅1‘𝐴)) ∈ Inacc) |
57 | 44, 56 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Inacc) |
58 | 57 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) → (𝐴 ≠ ∅ → 𝐴 ∈ Inacc)) |
59 | 1, 58 | syl5bir 242 |
. . . 4
⊢ ((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) → (¬ 𝐴 = ∅ → 𝐴 ∈ Inacc)) |
60 | 59 | orrd 859 |
. . 3
⊢ ((𝐴 ∈ On ∧
(𝑅1‘𝐴) ∈ Tarski) → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)) |
61 | 60 | ex 412 |
. 2
⊢ (𝐴 ∈ On →
((𝑅1‘𝐴) ∈ Tarski → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc))) |
62 | | fveq2 6756 |
. . . . 5
⊢ (𝐴 = ∅ →
(𝑅1‘𝐴) =
(𝑅1‘∅)) |
63 | 62, 45 | eqtrdi 2795 |
. . . 4
⊢ (𝐴 = ∅ →
(𝑅1‘𝐴) = ∅) |
64 | | 0tsk 10442 |
. . . 4
⊢ ∅
∈ Tarski |
65 | 63, 64 | eqeltrdi 2847 |
. . 3
⊢ (𝐴 = ∅ →
(𝑅1‘𝐴) ∈ Tarski) |
66 | | inatsk 10465 |
. . 3
⊢ (𝐴 ∈ Inacc →
(𝑅1‘𝐴) ∈ Tarski) |
67 | 65, 66 | jaoi 853 |
. 2
⊢ ((𝐴 = ∅ ∨ 𝐴 ∈ Inacc) →
(𝑅1‘𝐴) ∈ Tarski) |
68 | 61, 67 | impbid1 224 |
1
⊢ (𝐴 ∈ On →
((𝑅1‘𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc))) |