MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tskina Structured version   Visualization version   GIF version

Theorem r1tskina 10204
Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
r1tskina (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))

Proof of Theorem r1tskina
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ne 3017 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ∈ Tarski)
3 simpll 765 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
4 onwf 9259 . . . . . . . . . . . . . . . 16 On ⊆ (𝑅1 “ On)
54sseli 3963 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → 𝐴 (𝑅1 “ On))
6 eqid 2821 . . . . . . . . . . . . . . . 16 (rank‘𝐴) = (rank‘𝐴)
7 rankr1c 9250 . . . . . . . . . . . . . . . 16 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))))
86, 7mpbii 235 . . . . . . . . . . . . . . 15 (𝐴 (𝑅1 “ On) → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
95, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
109simpld 497 . . . . . . . . . . . . 13 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
11 r1fnon 9196 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
12 fndm 6455 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On → dom 𝑅1 = On)
1311, 12ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
1413eleq2i 2904 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
15 rankonid 9258 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1614, 15bitr3i 279 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ (rank‘𝐴) = 𝐴)
17 fveq2 6670 . . . . . . . . . . . . . 14 ((rank‘𝐴) = 𝐴 → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1816, 17sylbi 219 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1910, 18neleqtrd 2934 . . . . . . . . . . . 12 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1𝐴))
2019adantl 484 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → ¬ 𝐴 ∈ (𝑅1𝐴))
21 onssr1 9260 . . . . . . . . . . . . . 14 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2214, 21sylbir 237 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ⊆ (𝑅1𝐴))
23 tsken 10176 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ⊆ (𝑅1𝐴)) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2422, 23sylan2 594 . . . . . . . . . . . 12 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2524ord 860 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (¬ 𝐴 ≈ (𝑅1𝐴) → 𝐴 ∈ (𝑅1𝐴)))
2620, 25mt3d 150 . . . . . . . . . 10 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → 𝐴 ≈ (𝑅1𝐴))
272, 3, 26syl2anc 586 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ (𝑅1𝐴))
28 carden2b 9396 . . . . . . . . 9 (𝐴 ≈ (𝑅1𝐴) → (card‘𝐴) = (card‘(𝑅1𝐴)))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = (card‘(𝑅1𝐴)))
30 simpl 485 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ∈ On)
31 simplr 767 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ∈ Tarski)
3222adantr 483 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ⊆ (𝑅1𝐴))
3332sselda 3967 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
34 tsksdom 10178 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ≺ (𝑅1𝐴))
3531, 33, 34syl2anc 586 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ≺ (𝑅1𝐴))
36 simpll 765 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝐴 ∈ On)
3726ensymd 8560 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝑅1𝐴) ≈ 𝐴)
3831, 36, 37syl2anc 586 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ≈ 𝐴)
39 sdomentr 8651 . . . . . . . . . . . 12 ((𝑥 ≺ (𝑅1𝐴) ∧ (𝑅1𝐴) ≈ 𝐴) → 𝑥𝐴)
4035, 38, 39syl2anc 586 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥𝐴)
4140ralrimiva 3182 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → ∀𝑥𝐴 𝑥𝐴)
42 iscard 9404 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
4330, 41, 42sylanbrc 585 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (card‘𝐴) = 𝐴)
4443adantr 483 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = 𝐴)
4529, 44eqtr3d 2858 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) = 𝐴)
46 r10 9197 . . . . . . . . . . 11 (𝑅1‘∅) = ∅
47 on0eln0 6246 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
4847biimpar 480 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
49 r1sdom 9203 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5048, 49syldan 593 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5146, 50eqbrtrrid 5102 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ≺ (𝑅1𝐴))
52 fvex 6683 . . . . . . . . . . 11 (𝑅1𝐴) ∈ V
53520sdom 8648 . . . . . . . . . 10 (∅ ≺ (𝑅1𝐴) ↔ (𝑅1𝐴) ≠ ∅)
5451, 53sylib 220 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
5554adantlr 713 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
56 tskcard 10203 . . . . . . . 8 (((𝑅1𝐴) ∈ Tarski ∧ (𝑅1𝐴) ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
572, 55, 56syl2anc 586 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
5845, 57eqeltrrd 2914 . . . . . 6 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Inacc)
5958ex 415 . . . . 5 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 ≠ ∅ → 𝐴 ∈ Inacc))
601, 59syl5bir 245 . . . 4 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (¬ 𝐴 = ∅ → 𝐴 ∈ Inacc))
6160orrd 859 . . 3 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc))
6261ex 415 . 2 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
63 fveq2 6670 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
6463, 46syl6eq 2872 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
65 0tsk 10177 . . . 4 ∅ ∈ Tarski
6664, 65eqeltrdi 2921 . . 3 (𝐴 = ∅ → (𝑅1𝐴) ∈ Tarski)
67 inatsk 10200 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)
6866, 67jaoi 853 . 2 ((𝐴 = ∅ ∨ 𝐴 ∈ Inacc) → (𝑅1𝐴) ∈ Tarski)
6962, 68impbid1 227 1 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016  wral 3138  wss 3936  c0 4291   cuni 4838   class class class wbr 5066  dom cdm 5555  cima 5558  Oncon0 6191  suc csuc 6193   Fn wfn 6350  cfv 6355  cen 8506  csdm 8508  𝑅1cr1 9191  rankcrnk 9192  cardccrd 9364  Inacccina 10105  Tarskictsk 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-smo 7983  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-oi 8974  df-har 9022  df-r1 9193  df-rank 9194  df-card 9368  df-aleph 9369  df-cf 9370  df-acn 9371  df-ac 9542  df-wina 10106  df-ina 10107  df-tsk 10171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator