MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tskina Structured version   Visualization version   GIF version

Theorem r1tskina 10050
Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
r1tskina (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))

Proof of Theorem r1tskina
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2985 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 simplr 765 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ∈ Tarski)
3 simpll 763 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
4 onwf 9105 . . . . . . . . . . . . . . . 16 On ⊆ (𝑅1 “ On)
54sseli 3885 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → 𝐴 (𝑅1 “ On))
6 eqid 2795 . . . . . . . . . . . . . . . 16 (rank‘𝐴) = (rank‘𝐴)
7 rankr1c 9096 . . . . . . . . . . . . . . . 16 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))))
86, 7mpbii 234 . . . . . . . . . . . . . . 15 (𝐴 (𝑅1 “ On) → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
95, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
109simpld 495 . . . . . . . . . . . . 13 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
11 r1fnon 9042 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
12 fndm 6325 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On → dom 𝑅1 = On)
1311, 12ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
1413eleq2i 2874 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
15 rankonid 9104 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1614, 15bitr3i 278 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ (rank‘𝐴) = 𝐴)
17 fveq2 6538 . . . . . . . . . . . . . 14 ((rank‘𝐴) = 𝐴 → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1816, 17sylbi 218 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1910, 18neleqtrd 2904 . . . . . . . . . . . 12 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1𝐴))
2019adantl 482 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → ¬ 𝐴 ∈ (𝑅1𝐴))
21 onssr1 9106 . . . . . . . . . . . . . 14 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2214, 21sylbir 236 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ⊆ (𝑅1𝐴))
23 tsken 10022 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ⊆ (𝑅1𝐴)) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2422, 23sylan2 592 . . . . . . . . . . . 12 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2524ord 859 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (¬ 𝐴 ≈ (𝑅1𝐴) → 𝐴 ∈ (𝑅1𝐴)))
2620, 25mt3d 150 . . . . . . . . . 10 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → 𝐴 ≈ (𝑅1𝐴))
272, 3, 26syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ (𝑅1𝐴))
28 carden2b 9242 . . . . . . . . 9 (𝐴 ≈ (𝑅1𝐴) → (card‘𝐴) = (card‘(𝑅1𝐴)))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = (card‘(𝑅1𝐴)))
30 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ∈ On)
31 simplr 765 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ∈ Tarski)
3222adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ⊆ (𝑅1𝐴))
3332sselda 3889 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
34 tsksdom 10024 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ≺ (𝑅1𝐴))
3531, 33, 34syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ≺ (𝑅1𝐴))
36 simpll 763 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝐴 ∈ On)
3726ensymd 8408 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝑅1𝐴) ≈ 𝐴)
3831, 36, 37syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ≈ 𝐴)
39 sdomentr 8498 . . . . . . . . . . . 12 ((𝑥 ≺ (𝑅1𝐴) ∧ (𝑅1𝐴) ≈ 𝐴) → 𝑥𝐴)
4035, 38, 39syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥𝐴)
4140ralrimiva 3149 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → ∀𝑥𝐴 𝑥𝐴)
42 iscard 9250 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
4330, 41, 42sylanbrc 583 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (card‘𝐴) = 𝐴)
4443adantr 481 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = 𝐴)
4529, 44eqtr3d 2833 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) = 𝐴)
46 r10 9043 . . . . . . . . . . 11 (𝑅1‘∅) = ∅
47 on0eln0 6121 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
4847biimpar 478 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
49 r1sdom 9049 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5048, 49syldan 591 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5146, 50eqbrtrrid 4998 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ≺ (𝑅1𝐴))
52 fvex 6551 . . . . . . . . . . 11 (𝑅1𝐴) ∈ V
53520sdom 8495 . . . . . . . . . 10 (∅ ≺ (𝑅1𝐴) ↔ (𝑅1𝐴) ≠ ∅)
5451, 53sylib 219 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
5554adantlr 711 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
56 tskcard 10049 . . . . . . . 8 (((𝑅1𝐴) ∈ Tarski ∧ (𝑅1𝐴) ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
572, 55, 56syl2anc 584 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
5845, 57eqeltrrd 2884 . . . . . 6 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Inacc)
5958ex 413 . . . . 5 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 ≠ ∅ → 𝐴 ∈ Inacc))
601, 59syl5bir 244 . . . 4 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (¬ 𝐴 = ∅ → 𝐴 ∈ Inacc))
6160orrd 858 . . 3 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc))
6261ex 413 . 2 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
63 fveq2 6538 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
6463, 46syl6eq 2847 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
65 0tsk 10023 . . . 4 ∅ ∈ Tarski
6664, 65syl6eqel 2891 . . 3 (𝐴 = ∅ → (𝑅1𝐴) ∈ Tarski)
67 inatsk 10046 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)
6866, 67jaoi 852 . 2 ((𝐴 = ∅ ∨ 𝐴 ∈ Inacc) → (𝑅1𝐴) ∈ Tarski)
6962, 68impbid1 226 1 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wcel 2081  wne 2984  wral 3105  wss 3859  c0 4211   cuni 4745   class class class wbr 4962  dom cdm 5443  cima 5446  Oncon0 6066  suc csuc 6068   Fn wfn 6220  cfv 6225  cen 8354  csdm 8356  𝑅1cr1 9037  rankcrnk 9038  cardccrd 9210  Inacccina 9951  Tarskictsk 10016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-ac2 9731
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-smo 7835  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-oi 8820  df-har 8868  df-r1 9039  df-rank 9040  df-card 9214  df-aleph 9215  df-cf 9216  df-acn 9217  df-ac 9388  df-wina 9952  df-ina 9953  df-tsk 10017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator