Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge00 Structured version   Visualization version   GIF version

Theorem sge00 46367
Description: The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge00 ^‘∅) = 0

Proof of Theorem sge00
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5246 . . . . 5 ∅ ∈ V
21a1i 11 . . . 4 (⊤ → ∅ ∈ V)
3 f0 6705 . . . . . 6 ∅:∅⟶(0[,]+∞)
43a1i 11 . . . . 5 (⊤ → ∅:∅⟶(0[,]+∞))
5 noel 4289 . . . . . . 7 ¬ +∞ ∈ ∅
65a1i 11 . . . . . 6 (⊤ → ¬ +∞ ∈ ∅)
7 rn0 5868 . . . . . . . 8 ran ∅ = ∅
87eqcomi 2738 . . . . . . 7 ∅ = ran ∅
98a1i 11 . . . . . 6 (⊤ → ∅ = ran ∅)
106, 9neleqtrd 2850 . . . . 5 (⊤ → ¬ +∞ ∈ ran ∅)
114, 10fge0iccico 46361 . . . 4 (⊤ → ∅:∅⟶(0[,)+∞))
122, 11sge0reval 46363 . . 3 (⊤ → (Σ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ))
1312mptru 1547 . 2 ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < )
14 vex 3440 . . . . . . . . . . 11 𝑧 ∈ V
15 eqid 2729 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
1615elrnmpt 5900 . . . . . . . . . . 11 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦)))
1714, 16ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
1817biimpi 216 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
19 nfcv 2891 . . . . . . . . . . 11 𝑥𝑧
20 nfmpt1 5191 . . . . . . . . . . . 12 𝑥(𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2120nfrn 5894 . . . . . . . . . . 11 𝑥ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2219, 21nfel 2906 . . . . . . . . . 10 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
23 nfv 1914 . . . . . . . . . 10 𝑥 𝑧 = 0
24 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = Σ𝑦𝑥 (∅‘𝑦))
25 elinel1 4152 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅)
26 pw0 4763 . . . . . . . . . . . . . . . . . . 19 𝒫 ∅ = {∅}
2726eleq2i 2820 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
2827biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ 𝒫 ∅ → 𝑥 ∈ {∅})
2925, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ {∅})
30 elsni 4594 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} → 𝑥 = ∅)
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
3231sumeq1d 15607 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
3332adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
34 sum0 15628 . . . . . . . . . . . . . 14 Σ𝑦 ∈ ∅ (∅‘𝑦) = 0
3534a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦 ∈ ∅ (∅‘𝑦) = 0)
3624, 33, 353eqtrd 2768 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
3736ex 412 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
3837a1i 11 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0)))
3922, 23, 38rexlimd 3236 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
4018, 39mpd 15 . . . . . . . 8 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
41 velsn 4593 . . . . . . . . . 10 (𝑧 ∈ {0} ↔ 𝑧 = 0)
4241bicomi 224 . . . . . . . . 9 (𝑧 = 0 ↔ 𝑧 ∈ {0})
4342biimpi 216 . . . . . . . 8 (𝑧 = 0 → 𝑧 ∈ {0})
4440, 43syl 17 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 ∈ {0})
45 elsni 4594 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
46 0elpw 5295 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 ∅
47 0fi 8967 . . . . . . . . . . . . 13 ∅ ∈ Fin
4846, 47pm3.2i 470 . . . . . . . . . . . 12 (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)
49 elin 3919 . . . . . . . . . . . 12 (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin))
5048, 49mpbir 231 . . . . . . . . . . 11 ∅ ∈ (𝒫 ∅ ∩ Fin)
5134eqcomi 2738 . . . . . . . . . . 11 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)
52 sumeq1 15596 . . . . . . . . . . . 12 (𝑥 = ∅ → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
5352rspceeqv 3600 . . . . . . . . . . 11 ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5450, 51, 53mp2an 692 . . . . . . . . . 10 𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)
55 0re 11117 . . . . . . . . . . 11 0 ∈ ℝ
5615elrnmpt 5900 . . . . . . . . . . 11 (0 ∈ ℝ → (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)))
5755, 56ax-mp 5 . . . . . . . . . 10 (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5854, 57mpbir 231 . . . . . . . . 9 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
5958a1i 11 . . . . . . . 8 (𝑧 ∈ {0} → 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6045, 59eqeltrd 2828 . . . . . . 7 (𝑧 ∈ {0} → 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6144, 60impbii 209 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
6261ax-gen 1795 . . . . 5 𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
63 dfcleq 2722 . . . . 5 (ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0} ↔ ∀𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0}))
6462, 63mpbir 231 . . . 4 ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0}
6564supeq1i 9337 . . 3 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )
66 xrltso 13043 . . . 4 < Or ℝ*
67 0xr 11162 . . . 4 0 ∈ ℝ*
68 supsn 9363 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
6966, 67, 68mp2an 692 . . 3 sup({0}, ℝ*, < ) = 0
7065, 69eqtri 2752 . 2 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = 0
7113, 70eqtri 2752 1 ^‘∅) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wtru 1541  wcel 2109  wrex 3053  Vcvv 3436  cin 3902  c0 4284  𝒫 cpw 4551  {csn 4577  cmpt 5173   Or wor 5526  ran crn 5620  wf 6478  cfv 6482  (class class class)co 7349  Fincfn 8872  supcsup 9330  cr 11008  0cc0 11009  +∞cpnf 11146  *cxr 11148   < clt 11149  [,]cicc 13251  Σcsu 15593  Σ^csumge0 46353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46354
This theorem is referenced by:  sge0cl  46372  sge0isum  46418  ismeannd  46458  psmeasure  46462  isomennd  46522
  Copyright terms: Public domain W3C validator