Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge00 Structured version   Visualization version   GIF version

Theorem sge00 41230
Description: The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge00 ^‘∅) = 0

Proof of Theorem sge00
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4950 . . . . 5 ∅ ∈ V
21a1i 11 . . . 4 (⊤ → ∅ ∈ V)
3 f0 6268 . . . . . 6 ∅:∅⟶(0[,]+∞)
43a1i 11 . . . . 5 (⊤ → ∅:∅⟶(0[,]+∞))
5 noel 4083 . . . . . . 7 ¬ +∞ ∈ ∅
65a1i 11 . . . . . 6 (⊤ → ¬ +∞ ∈ ∅)
7 rn0 5546 . . . . . . . 8 ran ∅ = ∅
87eqcomi 2774 . . . . . . 7 ∅ = ran ∅
98a1i 11 . . . . . 6 (⊤ → ∅ = ran ∅)
106, 9neleqtrd 2865 . . . . 5 (⊤ → ¬ +∞ ∈ ran ∅)
114, 10fge0iccico 41224 . . . 4 (⊤ → ∅:∅⟶(0[,)+∞))
122, 11sge0reval 41226 . . 3 (⊤ → (Σ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ))
1312mptru 1660 . 2 ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < )
14 vex 3353 . . . . . . . . . . 11 𝑧 ∈ V
15 eqid 2765 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
1615elrnmpt 5541 . . . . . . . . . . 11 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦)))
1714, 16ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
1817biimpi 207 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
19 nfcv 2907 . . . . . . . . . . 11 𝑥𝑧
20 nfmpt1 4906 . . . . . . . . . . . 12 𝑥(𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2120nfrn 5537 . . . . . . . . . . 11 𝑥ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2219, 21nfel 2920 . . . . . . . . . 10 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
23 nfv 2009 . . . . . . . . . 10 𝑥 𝑧 = 0
24 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = Σ𝑦𝑥 (∅‘𝑦))
25 elinel1 3961 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅)
26 pw0 4497 . . . . . . . . . . . . . . . . . . 19 𝒫 ∅ = {∅}
2726eleq2i 2836 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
2827biimpi 207 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ 𝒫 ∅ → 𝑥 ∈ {∅})
2925, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ {∅})
30 elsni 4351 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} → 𝑥 = ∅)
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
3231sumeq1d 14716 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
3332adantr 472 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
34 sum0 14737 . . . . . . . . . . . . . 14 Σ𝑦 ∈ ∅ (∅‘𝑦) = 0
3534a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦 ∈ ∅ (∅‘𝑦) = 0)
3624, 33, 353eqtrd 2803 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
3736ex 401 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
3837a1i 11 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0)))
3922, 23, 38rexlimd 3173 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
4018, 39mpd 15 . . . . . . . 8 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
41 velsn 4350 . . . . . . . . . 10 (𝑧 ∈ {0} ↔ 𝑧 = 0)
4241bicomi 215 . . . . . . . . 9 (𝑧 = 0 ↔ 𝑧 ∈ {0})
4342biimpi 207 . . . . . . . 8 (𝑧 = 0 → 𝑧 ∈ {0})
4440, 43syl 17 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 ∈ {0})
45 elsni 4351 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
46 0elpw 4992 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 ∅
47 0fin 8395 . . . . . . . . . . . . 13 ∅ ∈ Fin
4846, 47pm3.2i 462 . . . . . . . . . . . 12 (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)
49 elin 3958 . . . . . . . . . . . 12 (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin))
5048, 49mpbir 222 . . . . . . . . . . 11 ∅ ∈ (𝒫 ∅ ∩ Fin)
5134eqcomi 2774 . . . . . . . . . . 11 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)
52 sumeq1 14704 . . . . . . . . . . . 12 (𝑥 = ∅ → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
5352rspceeqv 3479 . . . . . . . . . . 11 ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5450, 51, 53mp2an 683 . . . . . . . . . 10 𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)
55 0re 10295 . . . . . . . . . . 11 0 ∈ ℝ
5615elrnmpt 5541 . . . . . . . . . . 11 (0 ∈ ℝ → (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)))
5755, 56ax-mp 5 . . . . . . . . . 10 (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5854, 57mpbir 222 . . . . . . . . 9 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
5958a1i 11 . . . . . . . 8 (𝑧 ∈ {0} → 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6045, 59eqeltrd 2844 . . . . . . 7 (𝑧 ∈ {0} → 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6144, 60impbii 200 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
6261ax-gen 1890 . . . . 5 𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
63 dfcleq 2759 . . . . 5 (ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0} ↔ ∀𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0}))
6462, 63mpbir 222 . . . 4 ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0}
6564supeq1i 8560 . . 3 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )
66 xrltso 12174 . . . 4 < Or ℝ*
67 0xr 10340 . . . 4 0 ∈ ℝ*
68 supsn 8585 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
6966, 67, 68mp2an 683 . . 3 sup({0}, ℝ*, < ) = 0
7065, 69eqtri 2787 . 2 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = 0
7113, 70eqtri 2787 1 ^‘∅) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wal 1650   = wceq 1652  wtru 1653  wcel 2155  wrex 3056  Vcvv 3350  cin 3731  c0 4079  𝒫 cpw 4315  {csn 4334  cmpt 4888   Or wor 5197  ran crn 5278  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  supcsup 8553  cr 10188  0cc0 10189  +∞cpnf 10325  *cxr 10327   < clt 10328  [,]cicc 12380  Σcsu 14701  Σ^csumge0 41216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-clim 14504  df-sum 14702  df-sumge0 41217
This theorem is referenced by:  sge0cl  41235  sge0isum  41281  ismeannd  41321  psmeasure  41325  isomennd  41385
  Copyright terms: Public domain W3C validator