Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge00 Structured version   Visualization version   GIF version

Theorem sge00 46473
Description: The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge00 ^‘∅) = 0

Proof of Theorem sge00
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5243 . . . . 5 ∅ ∈ V
21a1i 11 . . . 4 (⊤ → ∅ ∈ V)
3 f0 6704 . . . . . 6 ∅:∅⟶(0[,]+∞)
43a1i 11 . . . . 5 (⊤ → ∅:∅⟶(0[,]+∞))
5 noel 4285 . . . . . . 7 ¬ +∞ ∈ ∅
65a1i 11 . . . . . 6 (⊤ → ¬ +∞ ∈ ∅)
7 rn0 5865 . . . . . . . 8 ran ∅ = ∅
87eqcomi 2740 . . . . . . 7 ∅ = ran ∅
98a1i 11 . . . . . 6 (⊤ → ∅ = ran ∅)
106, 9neleqtrd 2853 . . . . 5 (⊤ → ¬ +∞ ∈ ran ∅)
114, 10fge0iccico 46467 . . . 4 (⊤ → ∅:∅⟶(0[,)+∞))
122, 11sge0reval 46469 . . 3 (⊤ → (Σ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ))
1312mptru 1548 . 2 ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < )
14 vex 3440 . . . . . . . . . . 11 𝑧 ∈ V
15 eqid 2731 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
1615elrnmpt 5897 . . . . . . . . . . 11 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦)))
1714, 16ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
1817biimpi 216 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
19 nfcv 2894 . . . . . . . . . . 11 𝑥𝑧
20 nfmpt1 5188 . . . . . . . . . . . 12 𝑥(𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2120nfrn 5891 . . . . . . . . . . 11 𝑥ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2219, 21nfel 2909 . . . . . . . . . 10 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
23 nfv 1915 . . . . . . . . . 10 𝑥 𝑧 = 0
24 simpr 484 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = Σ𝑦𝑥 (∅‘𝑦))
25 elinel1 4148 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅)
26 pw0 4761 . . . . . . . . . . . . . . . . . . 19 𝒫 ∅ = {∅}
2726eleq2i 2823 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
2827biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ 𝒫 ∅ → 𝑥 ∈ {∅})
2925, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ {∅})
30 elsni 4590 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} → 𝑥 = ∅)
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
3231sumeq1d 15607 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
3332adantr 480 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
34 sum0 15628 . . . . . . . . . . . . . 14 Σ𝑦 ∈ ∅ (∅‘𝑦) = 0
3534a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦 ∈ ∅ (∅‘𝑦) = 0)
3624, 33, 353eqtrd 2770 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
3736ex 412 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
3837a1i 11 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0)))
3922, 23, 38rexlimd 3239 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
4018, 39mpd 15 . . . . . . . 8 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
41 velsn 4589 . . . . . . . . . 10 (𝑧 ∈ {0} ↔ 𝑧 = 0)
4241bicomi 224 . . . . . . . . 9 (𝑧 = 0 ↔ 𝑧 ∈ {0})
4342biimpi 216 . . . . . . . 8 (𝑧 = 0 → 𝑧 ∈ {0})
4440, 43syl 17 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 ∈ {0})
45 elsni 4590 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
46 0elpw 5292 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 ∅
47 0fi 8964 . . . . . . . . . . . . 13 ∅ ∈ Fin
4846, 47pm3.2i 470 . . . . . . . . . . . 12 (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)
49 elin 3913 . . . . . . . . . . . 12 (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin))
5048, 49mpbir 231 . . . . . . . . . . 11 ∅ ∈ (𝒫 ∅ ∩ Fin)
5134eqcomi 2740 . . . . . . . . . . 11 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)
52 sumeq1 15596 . . . . . . . . . . . 12 (𝑥 = ∅ → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
5352rspceeqv 3595 . . . . . . . . . . 11 ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5450, 51, 53mp2an 692 . . . . . . . . . 10 𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)
55 0re 11114 . . . . . . . . . . 11 0 ∈ ℝ
5615elrnmpt 5897 . . . . . . . . . . 11 (0 ∈ ℝ → (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)))
5755, 56ax-mp 5 . . . . . . . . . 10 (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5854, 57mpbir 231 . . . . . . . . 9 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
5958a1i 11 . . . . . . . 8 (𝑧 ∈ {0} → 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6045, 59eqeltrd 2831 . . . . . . 7 (𝑧 ∈ {0} → 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6144, 60impbii 209 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
6261ax-gen 1796 . . . . 5 𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
63 dfcleq 2724 . . . . 5 (ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0} ↔ ∀𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0}))
6462, 63mpbir 231 . . . 4 ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0}
6564supeq1i 9331 . . 3 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )
66 xrltso 13040 . . . 4 < Or ℝ*
67 0xr 11159 . . . 4 0 ∈ ℝ*
68 supsn 9357 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
6966, 67, 68mp2an 692 . . 3 sup({0}, ℝ*, < ) = 0
7065, 69eqtri 2754 . 2 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = 0
7113, 70eqtri 2754 1 ^‘∅) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wtru 1542  wcel 2111  wrex 3056  Vcvv 3436  cin 3896  c0 4280  𝒫 cpw 4547  {csn 4573  cmpt 5170   Or wor 5521  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  cr 11005  0cc0 11006  +∞cpnf 11143  *cxr 11145   < clt 11146  [,]cicc 13248  Σcsu 15593  Σ^csumge0 46459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46460
This theorem is referenced by:  sge0cl  46478  sge0isum  46524  ismeannd  46564  psmeasure  46568  isomennd  46628
  Copyright terms: Public domain W3C validator