Step | Hyp | Ref
| Expression |
1 | | 0ex 5226 |
. . . . 5
⊢ ∅
∈ V |
2 | 1 | a1i 11 |
. . . 4
⊢ (⊤
→ ∅ ∈ V) |
3 | | f0 6639 |
. . . . . 6
⊢
∅:∅⟶(0[,]+∞) |
4 | 3 | a1i 11 |
. . . . 5
⊢ (⊤
→ ∅:∅⟶(0[,]+∞)) |
5 | | noel 4261 |
. . . . . . 7
⊢ ¬
+∞ ∈ ∅ |
6 | 5 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ¬ +∞ ∈ ∅) |
7 | | rn0 5824 |
. . . . . . . 8
⊢ ran
∅ = ∅ |
8 | 7 | eqcomi 2747 |
. . . . . . 7
⊢ ∅ =
ran ∅ |
9 | 8 | a1i 11 |
. . . . . 6
⊢ (⊤
→ ∅ = ran ∅) |
10 | 6, 9 | neleqtrd 2860 |
. . . . 5
⊢ (⊤
→ ¬ +∞ ∈ ran ∅) |
11 | 4, 10 | fge0iccico 43798 |
. . . 4
⊢ (⊤
→ ∅:∅⟶(0[,)+∞)) |
12 | 2, 11 | sge0reval 43800 |
. . 3
⊢ (⊤
→ (Σ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩
Fin) ↦ Σ𝑦
∈ 𝑥
(∅‘𝑦)),
ℝ*, < )) |
13 | 12 | mptru 1546 |
. 2
⊢
(Σ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩
Fin) ↦ Σ𝑦
∈ 𝑥
(∅‘𝑦)),
ℝ*, < ) |
14 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
15 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (𝒫 ∅ ∩
Fin) ↦ Σ𝑦
∈ 𝑥
(∅‘𝑦)) = (𝑥 ∈ (𝒫 ∅ ∩
Fin) ↦ Σ𝑦
∈ 𝑥
(∅‘𝑦)) |
16 | 15 | elrnmpt 5854 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩
Fin)𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦))) |
17 | 14, 16 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩
Fin)𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦)) |
18 | 17 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩
Fin)𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦)) |
19 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥𝑧 |
20 | | nfmpt1 5178 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) |
21 | 20 | nfrn 5850 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥ran
(𝑥 ∈ (𝒫
∅ ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (∅‘𝑦)) |
22 | 19, 21 | nfel 2920 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) |
23 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑥 𝑧 = 0 |
24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝒫 ∅ ∩
Fin) ∧ 𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → 𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦)) |
25 | | elinel1 4125 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ (𝒫 ∅ ∩
Fin) → 𝑥 ∈
𝒫 ∅) |
26 | | pw0 4742 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝒫
∅ = {∅} |
27 | 26 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝒫 ∅ ↔
𝑥 ∈
{∅}) |
28 | 27 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝒫 ∅ →
𝑥 ∈
{∅}) |
29 | 25, 28 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝒫 ∅ ∩
Fin) → 𝑥 ∈
{∅}) |
30 | | elsni 4575 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {∅} → 𝑥 = ∅) |
31 | 29, 30 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝒫 ∅ ∩
Fin) → 𝑥 =
∅) |
32 | 31 | sumeq1d 15341 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝒫 ∅ ∩
Fin) → Σ𝑦 ∈
𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦)) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝒫 ∅ ∩
Fin) ∧ 𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → Σ𝑦 ∈ 𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦)) |
34 | | sum0 15361 |
. . . . . . . . . . . . . 14
⊢
Σ𝑦 ∈
∅ (∅‘𝑦) =
0 |
35 | 34 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (𝒫 ∅ ∩
Fin) ∧ 𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → Σ𝑦 ∈ ∅ (∅‘𝑦) = 0) |
36 | 24, 33, 35 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ (𝒫 ∅ ∩
Fin) ∧ 𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → 𝑧 = 0) |
37 | 36 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝒫 ∅ ∩
Fin) → (𝑧 =
Σ𝑦 ∈ 𝑥 (∅‘𝑦) → 𝑧 = 0)) |
38 | 37 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → (𝑥 ∈ (𝒫 ∅ ∩ Fin) →
(𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦) → 𝑧 = 0))) |
39 | 22, 23, 38 | rexlimd 3245 |
. . . . . . . . 9
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → (∃𝑥 ∈ (𝒫 ∅ ∩
Fin)𝑧 = Σ𝑦 ∈ 𝑥 (∅‘𝑦) → 𝑧 = 0)) |
40 | 18, 39 | mpd 15 |
. . . . . . . 8
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → 𝑧 = 0) |
41 | | velsn 4574 |
. . . . . . . . . 10
⊢ (𝑧 ∈ {0} ↔ 𝑧 = 0) |
42 | 41 | bicomi 223 |
. . . . . . . . 9
⊢ (𝑧 = 0 ↔ 𝑧 ∈ {0}) |
43 | 42 | biimpi 215 |
. . . . . . . 8
⊢ (𝑧 = 0 → 𝑧 ∈ {0}) |
44 | 40, 43 | syl 17 |
. . . . . . 7
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) → 𝑧 ∈ {0}) |
45 | | elsni 4575 |
. . . . . . . 8
⊢ (𝑧 ∈ {0} → 𝑧 = 0) |
46 | | 0elpw 5273 |
. . . . . . . . . . . . 13
⊢ ∅
∈ 𝒫 ∅ |
47 | | 0fin 8916 |
. . . . . . . . . . . . 13
⊢ ∅
∈ Fin |
48 | 46, 47 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (∅
∈ 𝒫 ∅ ∧ ∅ ∈ Fin) |
49 | | elin 3899 |
. . . . . . . . . . . 12
⊢ (∅
∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅
∧ ∅ ∈ Fin)) |
50 | 48, 49 | mpbir 230 |
. . . . . . . . . . 11
⊢ ∅
∈ (𝒫 ∅ ∩ Fin) |
51 | 34 | eqcomi 2747 |
. . . . . . . . . . 11
⊢ 0 =
Σ𝑦 ∈ ∅
(∅‘𝑦) |
52 | | sumeq1 15328 |
. . . . . . . . . . . 12
⊢ (𝑥 = ∅ → Σ𝑦 ∈ 𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦)) |
53 | 52 | rspceeqv 3567 |
. . . . . . . . . . 11
⊢ ((∅
∈ (𝒫 ∅ ∩ Fin) ∧ 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩
Fin)0 = Σ𝑦 ∈
𝑥 (∅‘𝑦)) |
54 | 50, 51, 53 | mp2an 688 |
. . . . . . . . . 10
⊢
∃𝑥 ∈
(𝒫 ∅ ∩ Fin)0 = Σ𝑦 ∈ 𝑥 (∅‘𝑦) |
55 | | 0re 10908 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
56 | 15 | elrnmpt 5854 |
. . . . . . . . . . 11
⊢ (0 ∈
ℝ → (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩
Fin)0 = Σ𝑦 ∈
𝑥 (∅‘𝑦))) |
57 | 55, 56 | ax-mp 5 |
. . . . . . . . . 10
⊢ (0 ∈
ran (𝑥 ∈ (𝒫
∅ ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 =
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) |
58 | 54, 57 | mpbir 230 |
. . . . . . . . 9
⊢ 0 ∈
ran (𝑥 ∈ (𝒫
∅ ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (∅‘𝑦)) |
59 | 58 | a1i 11 |
. . . . . . . 8
⊢ (𝑧 ∈ {0} → 0 ∈ ran
(𝑥 ∈ (𝒫
∅ ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (∅‘𝑦))) |
60 | 45, 59 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝑧 ∈ {0} → 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦))) |
61 | 44, 60 | impbii 208 |
. . . . . 6
⊢ (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0}) |
62 | 61 | ax-gen 1799 |
. . . . 5
⊢
∀𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0}) |
63 | | dfcleq 2731 |
. . . . 5
⊢ (ran
(𝑥 ∈ (𝒫
∅ ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (∅‘𝑦)) = {0} ↔ ∀𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})) |
64 | 62, 63 | mpbir 230 |
. . . 4
⊢ ran
(𝑥 ∈ (𝒫
∅ ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (∅‘𝑦)) = {0} |
65 | 64 | supeq1i 9136 |
. . 3
⊢ sup(ran
(𝑥 ∈ (𝒫
∅ ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (∅‘𝑦)), ℝ*, < ) = sup({0},
ℝ*, < ) |
66 | | xrltso 12804 |
. . . 4
⊢ < Or
ℝ* |
67 | | 0xr 10953 |
. . . 4
⊢ 0 ∈
ℝ* |
68 | | supsn 9161 |
. . . 4
⊢ (( <
Or ℝ* ∧ 0 ∈ ℝ*) → sup({0},
ℝ*, < ) = 0) |
69 | 66, 67, 68 | mp2an 688 |
. . 3
⊢ sup({0},
ℝ*, < ) = 0 |
70 | 65, 69 | eqtri 2766 |
. 2
⊢ sup(ran
(𝑥 ∈ (𝒫
∅ ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (∅‘𝑦)), ℝ*, < ) =
0 |
71 | 13, 70 | eqtri 2766 |
1
⊢
(Σ^‘∅) = 0 |