Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge00 Structured version   Visualization version   GIF version

Theorem sge00 43914
Description: The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge00 ^‘∅) = 0

Proof of Theorem sge00
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5231 . . . . 5 ∅ ∈ V
21a1i 11 . . . 4 (⊤ → ∅ ∈ V)
3 f0 6655 . . . . . 6 ∅:∅⟶(0[,]+∞)
43a1i 11 . . . . 5 (⊤ → ∅:∅⟶(0[,]+∞))
5 noel 4264 . . . . . . 7 ¬ +∞ ∈ ∅
65a1i 11 . . . . . 6 (⊤ → ¬ +∞ ∈ ∅)
7 rn0 5835 . . . . . . . 8 ran ∅ = ∅
87eqcomi 2747 . . . . . . 7 ∅ = ran ∅
98a1i 11 . . . . . 6 (⊤ → ∅ = ran ∅)
106, 9neleqtrd 2860 . . . . 5 (⊤ → ¬ +∞ ∈ ran ∅)
114, 10fge0iccico 43908 . . . 4 (⊤ → ∅:∅⟶(0[,)+∞))
122, 11sge0reval 43910 . . 3 (⊤ → (Σ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ))
1312mptru 1546 . 2 ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < )
14 vex 3436 . . . . . . . . . . 11 𝑧 ∈ V
15 eqid 2738 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
1615elrnmpt 5865 . . . . . . . . . . 11 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦)))
1714, 16ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
1817biimpi 215 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
19 nfcv 2907 . . . . . . . . . . 11 𝑥𝑧
20 nfmpt1 5182 . . . . . . . . . . . 12 𝑥(𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2120nfrn 5861 . . . . . . . . . . 11 𝑥ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2219, 21nfel 2921 . . . . . . . . . 10 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
23 nfv 1917 . . . . . . . . . 10 𝑥 𝑧 = 0
24 simpr 485 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = Σ𝑦𝑥 (∅‘𝑦))
25 elinel1 4129 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅)
26 pw0 4745 . . . . . . . . . . . . . . . . . . 19 𝒫 ∅ = {∅}
2726eleq2i 2830 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
2827biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ 𝒫 ∅ → 𝑥 ∈ {∅})
2925, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ {∅})
30 elsni 4578 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} → 𝑥 = ∅)
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
3231sumeq1d 15413 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
3332adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
34 sum0 15433 . . . . . . . . . . . . . 14 Σ𝑦 ∈ ∅ (∅‘𝑦) = 0
3534a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦 ∈ ∅ (∅‘𝑦) = 0)
3624, 33, 353eqtrd 2782 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
3736ex 413 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
3837a1i 11 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0)))
3922, 23, 38rexlimd 3250 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
4018, 39mpd 15 . . . . . . . 8 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
41 velsn 4577 . . . . . . . . . 10 (𝑧 ∈ {0} ↔ 𝑧 = 0)
4241bicomi 223 . . . . . . . . 9 (𝑧 = 0 ↔ 𝑧 ∈ {0})
4342biimpi 215 . . . . . . . 8 (𝑧 = 0 → 𝑧 ∈ {0})
4440, 43syl 17 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 ∈ {0})
45 elsni 4578 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
46 0elpw 5278 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 ∅
47 0fin 8954 . . . . . . . . . . . . 13 ∅ ∈ Fin
4846, 47pm3.2i 471 . . . . . . . . . . . 12 (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)
49 elin 3903 . . . . . . . . . . . 12 (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin))
5048, 49mpbir 230 . . . . . . . . . . 11 ∅ ∈ (𝒫 ∅ ∩ Fin)
5134eqcomi 2747 . . . . . . . . . . 11 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)
52 sumeq1 15400 . . . . . . . . . . . 12 (𝑥 = ∅ → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
5352rspceeqv 3575 . . . . . . . . . . 11 ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5450, 51, 53mp2an 689 . . . . . . . . . 10 𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)
55 0re 10977 . . . . . . . . . . 11 0 ∈ ℝ
5615elrnmpt 5865 . . . . . . . . . . 11 (0 ∈ ℝ → (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)))
5755, 56ax-mp 5 . . . . . . . . . 10 (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5854, 57mpbir 230 . . . . . . . . 9 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
5958a1i 11 . . . . . . . 8 (𝑧 ∈ {0} → 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6045, 59eqeltrd 2839 . . . . . . 7 (𝑧 ∈ {0} → 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6144, 60impbii 208 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
6261ax-gen 1798 . . . . 5 𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
63 dfcleq 2731 . . . . 5 (ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0} ↔ ∀𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0}))
6462, 63mpbir 230 . . . 4 ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0}
6564supeq1i 9206 . . 3 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )
66 xrltso 12875 . . . 4 < Or ℝ*
67 0xr 11022 . . . 4 0 ∈ ℝ*
68 supsn 9231 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
6966, 67, 68mp2an 689 . . 3 sup({0}, ℝ*, < ) = 0
7065, 69eqtri 2766 . 2 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = 0
7113, 70eqtri 2766 1 ^‘∅) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wtru 1540  wcel 2106  wrex 3065  Vcvv 3432  cin 3886  c0 4256  𝒫 cpw 4533  {csn 4561  cmpt 5157   Or wor 5502  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  Fincfn 8733  supcsup 9199  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008   < clt 11009  [,]cicc 13082  Σcsu 15397  Σ^csumge0 43900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901
This theorem is referenced by:  sge0cl  43919  sge0isum  43965  ismeannd  44005  psmeasure  44009  isomennd  44069
  Copyright terms: Public domain W3C validator