MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opptgdim2 Structured version   Visualization version   GIF version

Theorem opptgdim2 27106
Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppcom.a (𝜑𝐴𝑃)
oppcom.b (𝜑𝐵𝑃)
oppcom.o (𝜑𝐴𝑂𝐵)
Assertion
Ref Expression
opptgdim2 (𝜑𝐺DimTarskiG≥2)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opptgdim2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hpg.p . . 3 𝑃 = (Base‘𝐺)
2 opphl.l . . 3 𝐿 = (LineG‘𝐺)
3 hpg.i . . 3 𝐼 = (Itv‘𝐺)
4 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 727 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 simpllr 773 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑃)
7 simplr 766 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦𝑃)
8 oppcom.a . . . 4 (𝜑𝐴𝑃)
98ad3antrrr 727 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴𝑃)
10 hpg.d . . . . . . 7 = (dist‘𝐺)
11 hpg.o . . . . . . 7 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
12 opphl.d . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
13 oppcom.b . . . . . . 7 (𝜑𝐵𝑃)
14 oppcom.o . . . . . . 7 (𝜑𝐴𝑂𝐵)
151, 10, 3, 11, 2, 12, 4, 8, 13, 14oppne1 27102 . . . . . 6 (𝜑 → ¬ 𝐴𝐷)
1615ad3antrrr 727 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝐴𝐷)
17 simprl 768 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐷 = (𝑥𝐿𝑦))
1816, 17neleqtrd 2860 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝐴 ∈ (𝑥𝐿𝑦))
19 simprr 770 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
2019neneqd 2948 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝑥 = 𝑦)
21 ioran 981 . . . 4 (¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦) ↔ (¬ 𝐴 ∈ (𝑥𝐿𝑦) ∧ ¬ 𝑥 = 𝑦))
2218, 20, 21sylanbrc 583 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦))
231, 2, 3, 5, 6, 7, 9, 22ncoltgdim2 26926 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺DimTarskiG≥2)
241, 3, 2, 4, 12tgisline 26988 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
2523, 24r19.29vva 3266 1 (𝜑𝐺DimTarskiG≥2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884   class class class wbr 5074  {copab 5136  ran crn 5590  cfv 6433  (class class class)co 7275  2c2 12028  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  DimTarskiGcstrkgld 26792  Itvcitv 26794  LineGclng 26795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-trkgc 26809  df-trkgcb 26811  df-trkgld 26813  df-trkg 26814
This theorem is referenced by:  opphllem5  27112  opphl  27115
  Copyright terms: Public domain W3C validator