| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opptgdim2 | Structured version Visualization version GIF version | ||
| Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
| Ref | Expression |
|---|---|
| hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
| hpg.d | ⊢ − = (dist‘𝐺) |
| hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
| opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
| opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| oppcom.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| oppcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| oppcom.o | ⊢ (𝜑 → 𝐴𝑂𝐵) |
| Ref | Expression |
|---|---|
| opptgdim2 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | opphl.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | hpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | opphl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
| 6 | simpllr 775 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝑃) | |
| 7 | simplr 768 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝑃) | |
| 8 | oppcom.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 8 | ad3antrrr 730 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 ∈ 𝑃) |
| 10 | hpg.d | . . . . . . 7 ⊢ − = (dist‘𝐺) | |
| 11 | hpg.o | . . . . . . 7 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
| 12 | opphl.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
| 13 | oppcom.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 14 | oppcom.o | . . . . . . 7 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
| 15 | 1, 10, 3, 11, 2, 12, 4, 8, 13, 14 | oppne1 28725 | . . . . . 6 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
| 16 | 15 | ad3antrrr 730 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝐴 ∈ 𝐷) |
| 17 | simprl 770 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐷 = (𝑥𝐿𝑦)) | |
| 18 | 16, 17 | neleqtrd 2857 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝐴 ∈ (𝑥𝐿𝑦)) |
| 19 | simprr 772 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
| 20 | 19 | neneqd 2938 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝑥 = 𝑦) |
| 21 | ioran 985 | . . . 4 ⊢ (¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦) ↔ (¬ 𝐴 ∈ (𝑥𝐿𝑦) ∧ ¬ 𝑥 = 𝑦)) | |
| 22 | 18, 20, 21 | sylanbrc 583 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦)) |
| 23 | 1, 2, 3, 5, 6, 7, 9, 22 | ncoltgdim2 28549 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺DimTarskiG≥2) |
| 24 | 1, 3, 2, 4, 12 | tgisline 28611 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
| 25 | 23, 24 | r19.29vva 3205 | 1 ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 ∖ cdif 3928 class class class wbr 5124 {copab 5186 ran crn 5660 ‘cfv 6536 (class class class)co 7410 2c2 12300 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 DimTarskiG≥cstrkgld 28415 Itvcitv 28417 LineGclng 28418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-trkgc 28432 df-trkgcb 28434 df-trkgld 28436 df-trkg 28437 |
| This theorem is referenced by: opphllem5 28735 opphl 28738 |
| Copyright terms: Public domain | W3C validator |