Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opptgdim2 Structured version   Visualization version   GIF version

Theorem opptgdim2 26539
 Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
hpg.p 𝑃 = (Base‘𝐺)
hpg.d = (dist‘𝐺)
hpg.i 𝐼 = (Itv‘𝐺)
hpg.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
opphl.l 𝐿 = (LineG‘𝐺)
opphl.d (𝜑𝐷 ∈ ran 𝐿)
opphl.g (𝜑𝐺 ∈ TarskiG)
oppcom.a (𝜑𝐴𝑃)
oppcom.b (𝜑𝐵𝑃)
oppcom.o (𝜑𝐴𝑂𝐵)
Assertion
Ref Expression
opptgdim2 (𝜑𝐺DimTarskiG≥2)
Distinct variable groups:   𝐷,𝑎,𝑏   𝐼,𝑎,𝑏   𝑃,𝑎,𝑏   𝑡,𝐴   𝑡,𝐵   𝑡,𝐷   𝑡,𝐺   𝑡,𝐿   𝑡,𝐼   𝑡,𝑂   𝑡,𝑃   𝜑,𝑡   𝑡,   𝑡,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐿(𝑎,𝑏)   (𝑎,𝑏)   𝑂(𝑎,𝑏)

Proof of Theorem opptgdim2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hpg.p . . 3 𝑃 = (Base‘𝐺)
2 opphl.l . . 3 𝐿 = (LineG‘𝐺)
3 hpg.i . . 3 𝐼 = (Itv‘𝐺)
4 opphl.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 729 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺 ∈ TarskiG)
6 simpllr 775 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑃)
7 simplr 768 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑦𝑃)
8 oppcom.a . . . 4 (𝜑𝐴𝑃)
98ad3antrrr 729 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐴𝑃)
10 hpg.d . . . . . . 7 = (dist‘𝐺)
11 hpg.o . . . . . . 7 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃𝐷) ∧ 𝑏 ∈ (𝑃𝐷)) ∧ ∃𝑡𝐷 𝑡 ∈ (𝑎𝐼𝑏))}
12 opphl.d . . . . . . 7 (𝜑𝐷 ∈ ran 𝐿)
13 oppcom.b . . . . . . 7 (𝜑𝐵𝑃)
14 oppcom.o . . . . . . 7 (𝜑𝐴𝑂𝐵)
151, 10, 3, 11, 2, 12, 4, 8, 13, 14oppne1 26535 . . . . . 6 (𝜑 → ¬ 𝐴𝐷)
1615ad3antrrr 729 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝐴𝐷)
17 simprl 770 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐷 = (𝑥𝐿𝑦))
1816, 17neleqtrd 2911 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝐴 ∈ (𝑥𝐿𝑦))
19 simprr 772 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝑥𝑦)
2019neneqd 2992 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ 𝑥 = 𝑦)
21 ioran 981 . . . 4 (¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦) ↔ (¬ 𝐴 ∈ (𝑥𝐿𝑦) ∧ ¬ 𝑥 = 𝑦))
2218, 20, 21sylanbrc 586 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → ¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦))
231, 2, 3, 5, 6, 7, 9, 22ncoltgdim2 26359 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)) → 𝐺DimTarskiG≥2)
241, 3, 2, 4, 12tgisline 26421 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
2523, 24r19.29vva 3292 1 (𝜑𝐺DimTarskiG≥2)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107   ∖ cdif 3878   class class class wbr 5030  {copab 5092  ran crn 5520  ‘cfv 6324  (class class class)co 7135  2c2 11680  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  DimTarskiG≥cstrkgld 26228  Itvcitv 26230  LineGclng 26231 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-trkgc 26242  df-trkgcb 26244  df-trkgld 26246  df-trkg 26247 This theorem is referenced by:  opphllem5  26545  opphl  26548
 Copyright terms: Public domain W3C validator