![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opptgdim2 | Structured version Visualization version GIF version |
Description: If two points opposite to a line exist, dimension must be 2 or more. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
hpg.p | ⊢ 𝑃 = (Base‘𝐺) |
hpg.d | ⊢ − = (dist‘𝐺) |
hpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
hpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
opphl.l | ⊢ 𝐿 = (LineG‘𝐺) |
opphl.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
opphl.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
oppcom.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
oppcom.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
oppcom.o | ⊢ (𝜑 → 𝐴𝑂𝐵) |
Ref | Expression |
---|---|
opptgdim2 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | opphl.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
3 | hpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | opphl.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | ad3antrrr 721 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺 ∈ TarskiG) |
6 | simpllr 793 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝑃) | |
7 | simplr 785 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝑃) | |
8 | oppcom.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | ad3antrrr 721 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐴 ∈ 𝑃) |
10 | hpg.d | . . . . . . . 8 ⊢ − = (dist‘𝐺) | |
11 | hpg.o | . . . . . . . 8 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
12 | opphl.d | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
13 | oppcom.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
14 | oppcom.o | . . . . . . . 8 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
15 | 1, 10, 3, 11, 2, 12, 4, 8, 13, 14 | oppne1 26050 | . . . . . . 7 ⊢ (𝜑 → ¬ 𝐴 ∈ 𝐷) |
16 | 15 | ad3antrrr 721 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝐴 ∈ 𝐷) |
17 | simprl 787 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐷 = (𝑥𝐿𝑦)) | |
18 | 16, 17 | neleqtrd 2927 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝐴 ∈ (𝑥𝐿𝑦)) |
19 | simprr 789 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) | |
20 | 19 | neneqd 3004 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ 𝑥 = 𝑦) |
21 | 18, 20 | jca 507 | . . . 4 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → (¬ 𝐴 ∈ (𝑥𝐿𝑦) ∧ ¬ 𝑥 = 𝑦)) |
22 | ioran 1011 | . . . 4 ⊢ (¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦) ↔ (¬ 𝐴 ∈ (𝑥𝐿𝑦) ∧ ¬ 𝑥 = 𝑦)) | |
23 | 21, 22 | sylibr 226 | . . 3 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → ¬ (𝐴 ∈ (𝑥𝐿𝑦) ∨ 𝑥 = 𝑦)) |
24 | 1, 2, 3, 5, 6, 7, 9, 23 | ncoltgdim2 25877 | . 2 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) → 𝐺DimTarskiG≥2) |
25 | 1, 3, 2, 4, 12 | tgisline 25939 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (𝐷 = (𝑥𝐿𝑦) ∧ 𝑥 ≠ 𝑦)) |
26 | 24, 25 | r19.29vva 3291 | 1 ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 878 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∃wrex 3118 ∖ cdif 3795 class class class wbr 4873 {copab 4935 ran crn 5343 ‘cfv 6123 (class class class)co 6905 2c2 11406 Basecbs 16222 distcds 16314 TarskiGcstrkg 25742 DimTarskiG≥cstrkgld 25746 Itvcitv 25748 LineGclng 25749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-trkgc 25760 df-trkgcb 25762 df-trkgld 25764 df-trkg 25765 |
This theorem is referenced by: opphllem5 26060 opphl 26063 |
Copyright terms: Public domain | W3C validator |