Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0sn Structured version   Visualization version   GIF version

Theorem sge0sn 46370
Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0sn.1 (𝜑𝐴𝑉)
sge0sn.2 (𝜑𝐹:{𝐴}⟶(0[,]+∞))
Assertion
Ref Expression
sge0sn (𝜑 → (Σ^𝐹) = (𝐹𝐴))

Proof of Theorem sge0sn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5386 . . . . 5 {𝐴} ∈ V
21a1i 11 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → {𝐴} ∈ V)
3 sge0sn.2 . . . . 5 (𝜑𝐹:{𝐴}⟶(0[,]+∞))
43adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,]+∞))
5 id 22 . . . . . . 7 ((𝐹𝐴) = +∞ → (𝐹𝐴) = +∞)
65eqcomd 2735 . . . . . 6 ((𝐹𝐴) = +∞ → +∞ = (𝐹𝐴))
76adantl 481 . . . . 5 ((𝜑 ∧ (𝐹𝐴) = +∞) → +∞ = (𝐹𝐴))
83ffund 6674 . . . . . . 7 (𝜑 → Fun 𝐹)
98adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = +∞) → Fun 𝐹)
10 sge0sn.1 . . . . . . . . 9 (𝜑𝐴𝑉)
11 snidg 4620 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
1210, 11syl 17 . . . . . . . 8 (𝜑𝐴 ∈ {𝐴})
133fdmd 6680 . . . . . . . . 9 (𝜑 → dom 𝐹 = {𝐴})
1413eqcomd 2735 . . . . . . . 8 (𝜑 → {𝐴} = dom 𝐹)
1512, 14eleqtrd 2830 . . . . . . 7 (𝜑𝐴 ∈ dom 𝐹)
1615adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = +∞) → 𝐴 ∈ dom 𝐹)
17 fvelrn 7030 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
189, 16, 17syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ ran 𝐹)
197, 18eqeltrd 2828 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → +∞ ∈ ran 𝐹)
202, 4, 19sge0pnfval 46364 . . 3 ((𝜑 ∧ (𝐹𝐴) = +∞) → (Σ^𝐹) = +∞)
21 simpr 484 . . 3 ((𝜑 ∧ (𝐹𝐴) = +∞) → (𝐹𝐴) = +∞)
2220, 21eqtr4d 2767 . 2 ((𝜑 ∧ (𝐹𝐴) = +∞) → (Σ^𝐹) = (𝐹𝐴))
231a1i 11 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {𝐴} ∈ V)
243adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,]+∞))
25 elsni 4602 . . . . . . . . 9 (+∞ ∈ {(𝐹𝐴)} → +∞ = (𝐹𝐴))
2625eqcomd 2735 . . . . . . . 8 (+∞ ∈ {(𝐹𝐴)} → (𝐹𝐴) = +∞)
2726con3i 154 . . . . . . 7 (¬ (𝐹𝐴) = +∞ → ¬ +∞ ∈ {(𝐹𝐴)})
2827adantl 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → ¬ +∞ ∈ {(𝐹𝐴)})
2910, 3rnsnf 45171 . . . . . . . 8 (𝜑 → ran 𝐹 = {(𝐹𝐴)})
3029eqcomd 2735 . . . . . . 7 (𝜑 → {(𝐹𝐴)} = ran 𝐹)
3130adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {(𝐹𝐴)} = ran 𝐹)
3228, 31neleqtrd 2850 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → ¬ +∞ ∈ ran 𝐹)
3324, 32fge0iccico 46361 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,)+∞))
3423, 33sge0reval 46363 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
35 sum0 15663 . . . . . . . 8 Σ𝑦 ∈ ∅ (𝐹𝑦) = 0
3635eqcomi 2738 . . . . . . 7 0 = Σ𝑦 ∈ ∅ (𝐹𝑦)
3736a1i 11 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 0 = Σ𝑦 ∈ ∅ (𝐹𝑦))
38 nfcvd 2892 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝑦(𝐹𝐴))
39 nfv 1914 . . . . . . . 8 𝑦(𝜑 ∧ ¬ (𝐹𝐴) = +∞)
40 fveq2 6840 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
4140adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐹𝐴) = +∞) ∧ 𝑦 = 𝐴) → (𝐹𝑦) = (𝐹𝐴))
4210adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐴𝑉)
43 rge0ssre 13393 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
44 ax-resscn 11101 . . . . . . . . . 10 ℝ ⊆ ℂ
4543, 44sstri 3953 . . . . . . . . 9 (0[,)+∞) ⊆ ℂ
4642, 11syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐴 ∈ {𝐴})
4733, 46ffvelcdmd 7039 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ (0[,)+∞))
4845, 47sselid 3941 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ ℂ)
4938, 39, 41, 42, 48sumsnd 45013 . . . . . . 7 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → Σ𝑦 ∈ {𝐴} (𝐹𝑦) = (𝐹𝐴))
5049eqcomd 2735 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
5137, 50preq12d 4701 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {0, (𝐹𝐴)} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)})
5251supeq1d 9373 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → sup({0, (𝐹𝐴)}, ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < ))
53 xrltso 13077 . . . . . . . 8 < Or ℝ*
5453a1i 11 . . . . . . 7 (𝜑 → < Or ℝ*)
55 0xr 11197 . . . . . . . 8 0 ∈ ℝ*
5655a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
57 iccssxr 13367 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
583, 12ffvelcdmd 7039 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ (0[,]+∞))
5957, 58sselid 3941 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ*)
60 suppr 9399 . . . . . . 7 (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → sup({0, (𝐹𝐴)}, ℝ*, < ) = if((𝐹𝐴) < 0, 0, (𝐹𝐴)))
6154, 56, 59, 60syl3anc 1373 . . . . . 6 (𝜑 → sup({0, (𝐹𝐴)}, ℝ*, < ) = if((𝐹𝐴) < 0, 0, (𝐹𝐴)))
62 pnfxr 11204 . . . . . . . . . . 11 +∞ ∈ ℝ*
6362a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
6456, 63, 583jca 1128 . . . . . . . . 9 (𝜑 → (0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝐴) ∈ (0[,]+∞)))
65 iccgelb 13339 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝐴))
6664, 65syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝐹𝐴))
6756, 59xrlenltd 11216 . . . . . . . 8 (𝜑 → (0 ≤ (𝐹𝐴) ↔ ¬ (𝐹𝐴) < 0))
6866, 67mpbid 232 . . . . . . 7 (𝜑 → ¬ (𝐹𝐴) < 0)
6968iffalsed 4495 . . . . . 6 (𝜑 → if((𝐹𝐴) < 0, 0, (𝐹𝐴)) = (𝐹𝐴))
7061, 69eqtr2d 2765 . . . . 5 (𝜑 → (𝐹𝐴) = sup({0, (𝐹𝐴)}, ℝ*, < ))
7170adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = sup({0, (𝐹𝐴)}, ℝ*, < ))
72 pwsn 4860 . . . . . . . . . . . 12 𝒫 {𝐴} = {∅, {𝐴}}
7372ineq1i 4175 . . . . . . . . . . 11 (𝒫 {𝐴} ∩ Fin) = ({∅, {𝐴}} ∩ Fin)
74 0fi 8990 . . . . . . . . . . . . 13 ∅ ∈ Fin
75 snfi 8991 . . . . . . . . . . . . 13 {𝐴} ∈ Fin
76 prssi 4781 . . . . . . . . . . . . 13 ((∅ ∈ Fin ∧ {𝐴} ∈ Fin) → {∅, {𝐴}} ⊆ Fin)
7774, 75, 76mp2an 692 . . . . . . . . . . . 12 {∅, {𝐴}} ⊆ Fin
78 dfss2 3929 . . . . . . . . . . . . 13 ({∅, {𝐴}} ⊆ Fin ↔ ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}})
7978biimpi 216 . . . . . . . . . . . 12 ({∅, {𝐴}} ⊆ Fin → ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}})
8077, 79ax-mp 5 . . . . . . . . . . 11 ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}}
8173, 80eqtri 2752 . . . . . . . . . 10 (𝒫 {𝐴} ∩ Fin) = {∅, {𝐴}}
82 mpteq1 5191 . . . . . . . . . 10 ((𝒫 {𝐴} ∩ Fin) = {∅, {𝐴}} → (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)))
8381, 82ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦))
84 0ex 5257 . . . . . . . . . . . . 13 ∅ ∈ V
8584a1i 11 . . . . . . . . . . . 12 (⊤ → ∅ ∈ V)
861a1i 11 . . . . . . . . . . . 12 (⊤ → {𝐴} ∈ V)
87 sumex 15630 . . . . . . . . . . . . 13 Σ𝑦 ∈ ∅ (𝐹𝑦) ∈ V
8887a1i 11 . . . . . . . . . . . 12 (⊤ → Σ𝑦 ∈ ∅ (𝐹𝑦) ∈ V)
89 sumex 15630 . . . . . . . . . . . . 13 Σ𝑦 ∈ {𝐴} (𝐹𝑦) ∈ V
9089a1i 11 . . . . . . . . . . . 12 (⊤ → Σ𝑦 ∈ {𝐴} (𝐹𝑦) ∈ V)
91 sumeq1 15631 . . . . . . . . . . . . 13 (𝑥 = ∅ → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ ∅ (𝐹𝑦))
9291adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 = ∅) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ ∅ (𝐹𝑦))
93 sumeq1 15631 . . . . . . . . . . . . 13 (𝑥 = {𝐴} → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
9493adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 = {𝐴}) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
9585, 86, 88, 90, 92, 94fmptpr 7128 . . . . . . . . . . 11 (⊤ → {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)))
9695mptru 1547 . . . . . . . . . 10 {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦))
9796eqcomi 2738 . . . . . . . . 9 (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)) = {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
9883, 97eqtri 2752 . . . . . . . 8 (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
9998rneqi 5890 . . . . . . 7 ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
100 rnpropg 6183 . . . . . . . 8 ((∅ ∈ V ∧ {𝐴} ∈ V) → ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)})
10184, 1, 100mp2an 692 . . . . . . 7 ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}
10299, 101eqtri 2752 . . . . . 6 ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}
103102supeq1i 9374 . . . . 5 sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < )
104103a1i 11 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < ))
10552, 71, 1043eqtr4d 2774 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
10634, 105eqtr4d 2767 . 2 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (Σ^𝐹) = (𝐹𝐴))
10722, 106pm2.61dan 812 1 (𝜑 → (Σ^𝐹) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  Vcvv 3444  cin 3910  wss 3911  c0 4292  ifcif 4484  𝒫 cpw 4559  {csn 4585  {cpr 4587  cop 4591   class class class wbr 5102  cmpt 5183   Or wor 5538  dom cdm 5631  ran crn 5632  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  supcsup 9367  cc 11042  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  [,)cico 13284  [,]cicc 13285  Σcsu 15628  Σ^csumge0 46353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-sumge0 46354
This theorem is referenced by:  sge0snmpt  46374  sge0sup  46382  sge0snmptf  46428  caratheodorylem1  46517
  Copyright terms: Public domain W3C validator