Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0sn Structured version   Visualization version   GIF version

Theorem sge0sn 45905
Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0sn.1 (𝜑𝐴𝑉)
sge0sn.2 (𝜑𝐹:{𝐴}⟶(0[,]+∞))
Assertion
Ref Expression
sge0sn (𝜑 → (Σ^𝐹) = (𝐹𝐴))

Proof of Theorem sge0sn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5433 . . . . 5 {𝐴} ∈ V
21a1i 11 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → {𝐴} ∈ V)
3 sge0sn.2 . . . . 5 (𝜑𝐹:{𝐴}⟶(0[,]+∞))
43adantr 479 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,]+∞))
5 id 22 . . . . . . 7 ((𝐹𝐴) = +∞ → (𝐹𝐴) = +∞)
65eqcomd 2731 . . . . . 6 ((𝐹𝐴) = +∞ → +∞ = (𝐹𝐴))
76adantl 480 . . . . 5 ((𝜑 ∧ (𝐹𝐴) = +∞) → +∞ = (𝐹𝐴))
83ffund 6727 . . . . . . 7 (𝜑 → Fun 𝐹)
98adantr 479 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = +∞) → Fun 𝐹)
10 sge0sn.1 . . . . . . . . 9 (𝜑𝐴𝑉)
11 snidg 4664 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
1210, 11syl 17 . . . . . . . 8 (𝜑𝐴 ∈ {𝐴})
133fdmd 6733 . . . . . . . . 9 (𝜑 → dom 𝐹 = {𝐴})
1413eqcomd 2731 . . . . . . . 8 (𝜑 → {𝐴} = dom 𝐹)
1512, 14eleqtrd 2827 . . . . . . 7 (𝜑𝐴 ∈ dom 𝐹)
1615adantr 479 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = +∞) → 𝐴 ∈ dom 𝐹)
17 fvelrn 7085 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
189, 16, 17syl2anc 582 . . . . 5 ((𝜑 ∧ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ ran 𝐹)
197, 18eqeltrd 2825 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → +∞ ∈ ran 𝐹)
202, 4, 19sge0pnfval 45899 . . 3 ((𝜑 ∧ (𝐹𝐴) = +∞) → (Σ^𝐹) = +∞)
21 simpr 483 . . 3 ((𝜑 ∧ (𝐹𝐴) = +∞) → (𝐹𝐴) = +∞)
2220, 21eqtr4d 2768 . 2 ((𝜑 ∧ (𝐹𝐴) = +∞) → (Σ^𝐹) = (𝐹𝐴))
231a1i 11 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {𝐴} ∈ V)
243adantr 479 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,]+∞))
25 elsni 4647 . . . . . . . . 9 (+∞ ∈ {(𝐹𝐴)} → +∞ = (𝐹𝐴))
2625eqcomd 2731 . . . . . . . 8 (+∞ ∈ {(𝐹𝐴)} → (𝐹𝐴) = +∞)
2726con3i 154 . . . . . . 7 (¬ (𝐹𝐴) = +∞ → ¬ +∞ ∈ {(𝐹𝐴)})
2827adantl 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → ¬ +∞ ∈ {(𝐹𝐴)})
2910, 3rnsnf 44696 . . . . . . . 8 (𝜑 → ran 𝐹 = {(𝐹𝐴)})
3029eqcomd 2731 . . . . . . 7 (𝜑 → {(𝐹𝐴)} = ran 𝐹)
3130adantr 479 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {(𝐹𝐴)} = ran 𝐹)
3228, 31neleqtrd 2847 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → ¬ +∞ ∈ ran 𝐹)
3324, 32fge0iccico 45896 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,)+∞))
3423, 33sge0reval 45898 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
35 sum0 15703 . . . . . . . 8 Σ𝑦 ∈ ∅ (𝐹𝑦) = 0
3635eqcomi 2734 . . . . . . 7 0 = Σ𝑦 ∈ ∅ (𝐹𝑦)
3736a1i 11 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 0 = Σ𝑦 ∈ ∅ (𝐹𝑦))
38 nfcvd 2892 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝑦(𝐹𝐴))
39 nfv 1909 . . . . . . . 8 𝑦(𝜑 ∧ ¬ (𝐹𝐴) = +∞)
40 fveq2 6896 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
4140adantl 480 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐹𝐴) = +∞) ∧ 𝑦 = 𝐴) → (𝐹𝑦) = (𝐹𝐴))
4210adantr 479 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐴𝑉)
43 rge0ssre 13468 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
44 ax-resscn 11197 . . . . . . . . . 10 ℝ ⊆ ℂ
4543, 44sstri 3986 . . . . . . . . 9 (0[,)+∞) ⊆ ℂ
4642, 11syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐴 ∈ {𝐴})
4733, 46ffvelcdmd 7094 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ (0[,)+∞))
4845, 47sselid 3974 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ ℂ)
4938, 39, 41, 42, 48sumsnd 44530 . . . . . . 7 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → Σ𝑦 ∈ {𝐴} (𝐹𝑦) = (𝐹𝐴))
5049eqcomd 2731 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
5137, 50preq12d 4747 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {0, (𝐹𝐴)} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)})
5251supeq1d 9471 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → sup({0, (𝐹𝐴)}, ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < ))
53 xrltso 13155 . . . . . . . 8 < Or ℝ*
5453a1i 11 . . . . . . 7 (𝜑 → < Or ℝ*)
55 0xr 11293 . . . . . . . 8 0 ∈ ℝ*
5655a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
57 iccssxr 13442 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
583, 12ffvelcdmd 7094 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ (0[,]+∞))
5957, 58sselid 3974 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ*)
60 suppr 9496 . . . . . . 7 (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → sup({0, (𝐹𝐴)}, ℝ*, < ) = if((𝐹𝐴) < 0, 0, (𝐹𝐴)))
6154, 56, 59, 60syl3anc 1368 . . . . . 6 (𝜑 → sup({0, (𝐹𝐴)}, ℝ*, < ) = if((𝐹𝐴) < 0, 0, (𝐹𝐴)))
62 pnfxr 11300 . . . . . . . . . . 11 +∞ ∈ ℝ*
6362a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
6456, 63, 583jca 1125 . . . . . . . . 9 (𝜑 → (0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝐴) ∈ (0[,]+∞)))
65 iccgelb 13415 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝐴))
6664, 65syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝐹𝐴))
6756, 59xrlenltd 11312 . . . . . . . 8 (𝜑 → (0 ≤ (𝐹𝐴) ↔ ¬ (𝐹𝐴) < 0))
6866, 67mpbid 231 . . . . . . 7 (𝜑 → ¬ (𝐹𝐴) < 0)
6968iffalsed 4541 . . . . . 6 (𝜑 → if((𝐹𝐴) < 0, 0, (𝐹𝐴)) = (𝐹𝐴))
7061, 69eqtr2d 2766 . . . . 5 (𝜑 → (𝐹𝐴) = sup({0, (𝐹𝐴)}, ℝ*, < ))
7170adantr 479 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = sup({0, (𝐹𝐴)}, ℝ*, < ))
72 pwsn 4902 . . . . . . . . . . . 12 𝒫 {𝐴} = {∅, {𝐴}}
7372ineq1i 4206 . . . . . . . . . . 11 (𝒫 {𝐴} ∩ Fin) = ({∅, {𝐴}} ∩ Fin)
74 0fin 9196 . . . . . . . . . . . . 13 ∅ ∈ Fin
75 snfi 9069 . . . . . . . . . . . . 13 {𝐴} ∈ Fin
76 prssi 4826 . . . . . . . . . . . . 13 ((∅ ∈ Fin ∧ {𝐴} ∈ Fin) → {∅, {𝐴}} ⊆ Fin)
7774, 75, 76mp2an 690 . . . . . . . . . . . 12 {∅, {𝐴}} ⊆ Fin
78 dfss2 3962 . . . . . . . . . . . . 13 ({∅, {𝐴}} ⊆ Fin ↔ ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}})
7978biimpi 215 . . . . . . . . . . . 12 ({∅, {𝐴}} ⊆ Fin → ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}})
8077, 79ax-mp 5 . . . . . . . . . . 11 ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}}
8173, 80eqtri 2753 . . . . . . . . . 10 (𝒫 {𝐴} ∩ Fin) = {∅, {𝐴}}
82 mpteq1 5242 . . . . . . . . . 10 ((𝒫 {𝐴} ∩ Fin) = {∅, {𝐴}} → (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)))
8381, 82ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦))
84 0ex 5308 . . . . . . . . . . . . 13 ∅ ∈ V
8584a1i 11 . . . . . . . . . . . 12 (⊤ → ∅ ∈ V)
861a1i 11 . . . . . . . . . . . 12 (⊤ → {𝐴} ∈ V)
87 sumex 15670 . . . . . . . . . . . . 13 Σ𝑦 ∈ ∅ (𝐹𝑦) ∈ V
8887a1i 11 . . . . . . . . . . . 12 (⊤ → Σ𝑦 ∈ ∅ (𝐹𝑦) ∈ V)
89 sumex 15670 . . . . . . . . . . . . 13 Σ𝑦 ∈ {𝐴} (𝐹𝑦) ∈ V
9089a1i 11 . . . . . . . . . . . 12 (⊤ → Σ𝑦 ∈ {𝐴} (𝐹𝑦) ∈ V)
91 sumeq1 15671 . . . . . . . . . . . . 13 (𝑥 = ∅ → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ ∅ (𝐹𝑦))
9291adantl 480 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 = ∅) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ ∅ (𝐹𝑦))
93 sumeq1 15671 . . . . . . . . . . . . 13 (𝑥 = {𝐴} → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
9493adantl 480 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 = {𝐴}) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
9585, 86, 88, 90, 92, 94fmptpr 7181 . . . . . . . . . . 11 (⊤ → {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)))
9695mptru 1540 . . . . . . . . . 10 {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦))
9796eqcomi 2734 . . . . . . . . 9 (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)) = {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
9883, 97eqtri 2753 . . . . . . . 8 (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
9998rneqi 5939 . . . . . . 7 ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
100 rnpropg 6228 . . . . . . . 8 ((∅ ∈ V ∧ {𝐴} ∈ V) → ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)})
10184, 1, 100mp2an 690 . . . . . . 7 ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}
10299, 101eqtri 2753 . . . . . 6 ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}
103102supeq1i 9472 . . . . 5 sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < )
104103a1i 11 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < ))
10552, 71, 1043eqtr4d 2775 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
10634, 105eqtr4d 2768 . 2 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (Σ^𝐹) = (𝐹𝐴))
10722, 106pm2.61dan 811 1 (𝜑 → (Σ^𝐹) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wtru 1534  wcel 2098  Vcvv 3461  cin 3943  wss 3944  c0 4322  ifcif 4530  𝒫 cpw 4604  {csn 4630  {cpr 4632  cop 4636   class class class wbr 5149  cmpt 5232   Or wor 5589  dom cdm 5678  ran crn 5679  Fun wfun 6543  wf 6545  cfv 6549  (class class class)co 7419  Fincfn 8964  supcsup 9465  cc 11138  cr 11139  0cc0 11140  +∞cpnf 11277  *cxr 11279   < clt 11280  cle 11281  [,)cico 13361  [,]cicc 13362  Σcsu 15668  Σ^csumge0 45888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-ico 13365  df-icc 13366  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219  df-clim 15468  df-sum 15669  df-sumge0 45889
This theorem is referenced by:  sge0snmpt  45909  sge0sup  45917  sge0snmptf  45963  caratheodorylem1  46052
  Copyright terms: Public domain W3C validator