Step | Hyp | Ref
| Expression |
1 | | snex 5349 |
. . . . 5
⊢ {𝐴} ∈ V |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) → {𝐴} ∈ V) |
3 | | sge0sn.2 |
. . . . 5
⊢ (𝜑 → 𝐹:{𝐴}⟶(0[,]+∞)) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,]+∞)) |
5 | | id 22 |
. . . . . . 7
⊢ ((𝐹‘𝐴) = +∞ → (𝐹‘𝐴) = +∞) |
6 | 5 | eqcomd 2744 |
. . . . . 6
⊢ ((𝐹‘𝐴) = +∞ → +∞ = (𝐹‘𝐴)) |
7 | 6 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) → +∞ = (𝐹‘𝐴)) |
8 | 3 | ffund 6588 |
. . . . . . 7
⊢ (𝜑 → Fun 𝐹) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) → Fun 𝐹) |
10 | | sge0sn.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
11 | | snidg 4592 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) |
12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ {𝐴}) |
13 | 3 | fdmd 6595 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = {𝐴}) |
14 | 13 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝜑 → {𝐴} = dom 𝐹) |
15 | 12, 14 | eleqtrd 2841 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ dom 𝐹) |
16 | 15 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) → 𝐴 ∈ dom 𝐹) |
17 | | fvelrn 6936 |
. . . . . 6
⊢ ((Fun
𝐹 ∧ 𝐴 ∈ dom 𝐹) → (𝐹‘𝐴) ∈ ran 𝐹) |
18 | 9, 16, 17 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) → (𝐹‘𝐴) ∈ ran 𝐹) |
19 | 7, 18 | eqeltrd 2839 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) → +∞ ∈ ran
𝐹) |
20 | 2, 4, 19 | sge0pnfval 43801 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) →
(Σ^‘𝐹) = +∞) |
21 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) → (𝐹‘𝐴) = +∞) |
22 | 20, 21 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝐴) = +∞) →
(Σ^‘𝐹) = (𝐹‘𝐴)) |
23 | 1 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → {𝐴} ∈ V) |
24 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,]+∞)) |
25 | | elsni 4575 |
. . . . . . . . 9
⊢ (+∞
∈ {(𝐹‘𝐴)} → +∞ = (𝐹‘𝐴)) |
26 | 25 | eqcomd 2744 |
. . . . . . . 8
⊢ (+∞
∈ {(𝐹‘𝐴)} → (𝐹‘𝐴) = +∞) |
27 | 26 | con3i 154 |
. . . . . . 7
⊢ (¬
(𝐹‘𝐴) = +∞ → ¬ +∞ ∈
{(𝐹‘𝐴)}) |
28 | 27 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → ¬ +∞ ∈
{(𝐹‘𝐴)}) |
29 | 10, 3 | rnsnf 42610 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) |
30 | 29 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → {(𝐹‘𝐴)} = ran 𝐹) |
31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → {(𝐹‘𝐴)} = ran 𝐹) |
32 | 28, 31 | neleqtrd 2860 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → ¬ +∞ ∈
ran 𝐹) |
33 | 24, 32 | fge0iccico 43798 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,)+∞)) |
34 | 23, 33 | sge0reval 43800 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) →
(Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
35 | | sum0 15361 |
. . . . . . . 8
⊢
Σ𝑦 ∈
∅ (𝐹‘𝑦) = 0 |
36 | 35 | eqcomi 2747 |
. . . . . . 7
⊢ 0 =
Σ𝑦 ∈ ∅
(𝐹‘𝑦) |
37 | 36 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → 0 = Σ𝑦 ∈ ∅ (𝐹‘𝑦)) |
38 | | nfcvd 2907 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → Ⅎ𝑦(𝐹‘𝐴)) |
39 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) |
40 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝐹‘𝑦) = (𝐹‘𝐴)) |
41 | 40 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) ∧ 𝑦 = 𝐴) → (𝐹‘𝑦) = (𝐹‘𝐴)) |
42 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → 𝐴 ∈ 𝑉) |
43 | | rge0ssre 13117 |
. . . . . . . . . 10
⊢
(0[,)+∞) ⊆ ℝ |
44 | | ax-resscn 10859 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
45 | 43, 44 | sstri 3926 |
. . . . . . . . 9
⊢
(0[,)+∞) ⊆ ℂ |
46 | 42, 11 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → 𝐴 ∈ {𝐴}) |
47 | 33, 46 | ffvelrnd 6944 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → (𝐹‘𝐴) ∈ (0[,)+∞)) |
48 | 45, 47 | sselid 3915 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → (𝐹‘𝐴) ∈ ℂ) |
49 | 38, 39, 41, 42, 48 | sumsnd 42458 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → Σ𝑦 ∈ {𝐴} (𝐹‘𝑦) = (𝐹‘𝐴)) |
50 | 49 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → (𝐹‘𝐴) = Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)) |
51 | 37, 50 | preq12d 4674 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → {0, (𝐹‘𝐴)} = {Σ𝑦 ∈ ∅ (𝐹‘𝑦), Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)}) |
52 | 51 | supeq1d 9135 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → sup({0, (𝐹‘𝐴)}, ℝ*, < ) =
sup({Σ𝑦 ∈
∅ (𝐹‘𝑦), Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)}, ℝ*, <
)) |
53 | | xrltso 12804 |
. . . . . . . 8
⊢ < Or
ℝ* |
54 | 53 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → < Or
ℝ*) |
55 | | 0xr 10953 |
. . . . . . . 8
⊢ 0 ∈
ℝ* |
56 | 55 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℝ*) |
57 | | iccssxr 13091 |
. . . . . . . 8
⊢
(0[,]+∞) ⊆ ℝ* |
58 | 3, 12 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝐴) ∈ (0[,]+∞)) |
59 | 57, 58 | sselid 3915 |
. . . . . . 7
⊢ (𝜑 → (𝐹‘𝐴) ∈
ℝ*) |
60 | | suppr 9160 |
. . . . . . 7
⊢ (( <
Or ℝ* ∧ 0 ∈ ℝ* ∧ (𝐹‘𝐴) ∈ ℝ*) → sup({0,
(𝐹‘𝐴)}, ℝ*, < ) = if((𝐹‘𝐴) < 0, 0, (𝐹‘𝐴))) |
61 | 54, 56, 59, 60 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → sup({0, (𝐹‘𝐴)}, ℝ*, < ) = if((𝐹‘𝐴) < 0, 0, (𝐹‘𝐴))) |
62 | | pnfxr 10960 |
. . . . . . . . . . 11
⊢ +∞
∈ ℝ* |
63 | 62 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → +∞ ∈
ℝ*) |
64 | 56, 63, 58 | 3jca 1126 |
. . . . . . . . 9
⊢ (𝜑 → (0 ∈
ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹‘𝐴) ∈ (0[,]+∞))) |
65 | | iccgelb 13064 |
. . . . . . . . 9
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧
(𝐹‘𝐴) ∈ (0[,]+∞)) → 0 ≤
(𝐹‘𝐴)) |
66 | 64, 65 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (𝐹‘𝐴)) |
67 | 56, 59 | xrlenltd 10972 |
. . . . . . . 8
⊢ (𝜑 → (0 ≤ (𝐹‘𝐴) ↔ ¬ (𝐹‘𝐴) < 0)) |
68 | 66, 67 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → ¬ (𝐹‘𝐴) < 0) |
69 | 68 | iffalsed 4467 |
. . . . . 6
⊢ (𝜑 → if((𝐹‘𝐴) < 0, 0, (𝐹‘𝐴)) = (𝐹‘𝐴)) |
70 | 61, 69 | eqtr2d 2779 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐴) = sup({0, (𝐹‘𝐴)}, ℝ*, <
)) |
71 | 70 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → (𝐹‘𝐴) = sup({0, (𝐹‘𝐴)}, ℝ*, <
)) |
72 | | pwsn 4828 |
. . . . . . . . . . . 12
⊢ 𝒫
{𝐴} = {∅, {𝐴}} |
73 | 72 | ineq1i 4139 |
. . . . . . . . . . 11
⊢
(𝒫 {𝐴} ∩
Fin) = ({∅, {𝐴}}
∩ Fin) |
74 | | 0fin 8916 |
. . . . . . . . . . . . 13
⊢ ∅
∈ Fin |
75 | | snfi 8788 |
. . . . . . . . . . . . 13
⊢ {𝐴} ∈ Fin |
76 | | prssi 4751 |
. . . . . . . . . . . . 13
⊢ ((∅
∈ Fin ∧ {𝐴} ∈
Fin) → {∅, {𝐴}}
⊆ Fin) |
77 | 74, 75, 76 | mp2an 688 |
. . . . . . . . . . . 12
⊢ {∅,
{𝐴}} ⊆
Fin |
78 | | df-ss 3900 |
. . . . . . . . . . . . 13
⊢
({∅, {𝐴}}
⊆ Fin ↔ ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}}) |
79 | 78 | biimpi 215 |
. . . . . . . . . . . 12
⊢
({∅, {𝐴}}
⊆ Fin → ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}}) |
80 | 77, 79 | ax-mp 5 |
. . . . . . . . . . 11
⊢
({∅, {𝐴}}
∩ Fin) = {∅, {𝐴}} |
81 | 73, 80 | eqtri 2766 |
. . . . . . . . . 10
⊢
(𝒫 {𝐴} ∩
Fin) = {∅, {𝐴}} |
82 | | mpteq1 5163 |
. . . . . . . . . 10
⊢
((𝒫 {𝐴}
∩ Fin) = {∅, {𝐴}}
→ (𝑥 ∈ (𝒫
{𝐴} ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
83 | 81, 82 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
84 | | 0ex 5226 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
85 | 84 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ ∅ ∈ V) |
86 | 1 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ {𝐴} ∈
V) |
87 | | sumex 15327 |
. . . . . . . . . . . . 13
⊢
Σ𝑦 ∈
∅ (𝐹‘𝑦) ∈ V |
88 | 87 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ Σ𝑦 ∈
∅ (𝐹‘𝑦) ∈ V) |
89 | | sumex 15327 |
. . . . . . . . . . . . 13
⊢
Σ𝑦 ∈
{𝐴} (𝐹‘𝑦) ∈ V |
90 | 89 | a1i 11 |
. . . . . . . . . . . 12
⊢ (⊤
→ Σ𝑦 ∈
{𝐴} (𝐹‘𝑦) ∈ V) |
91 | | sumeq1 15328 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ∅ → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) = Σ𝑦 ∈ ∅ (𝐹‘𝑦)) |
92 | 91 | adantl 481 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥 =
∅) → Σ𝑦
∈ 𝑥 (𝐹‘𝑦) = Σ𝑦 ∈ ∅ (𝐹‘𝑦)) |
93 | | sumeq1 15328 |
. . . . . . . . . . . . 13
⊢ (𝑥 = {𝐴} → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) = Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)) |
94 | 93 | adantl 481 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥 =
{𝐴}) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) = Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)) |
95 | 85, 86, 88, 90, 92, 94 | fmptpr 7026 |
. . . . . . . . . . 11
⊢ (⊤
→ {〈∅, Σ𝑦 ∈ ∅ (𝐹‘𝑦)〉, 〈{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)〉} = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦))) |
96 | 95 | mptru 1546 |
. . . . . . . . . 10
⊢
{〈∅, Σ𝑦 ∈ ∅ (𝐹‘𝑦)〉, 〈{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)〉} = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) |
97 | 96 | eqcomi 2747 |
. . . . . . . . 9
⊢ (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = {〈∅, Σ𝑦 ∈ ∅ (𝐹‘𝑦)〉, 〈{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)〉} |
98 | 83, 97 | eqtri 2766 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = {〈∅, Σ𝑦 ∈ ∅ (𝐹‘𝑦)〉, 〈{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)〉} |
99 | 98 | rneqi 5835 |
. . . . . . 7
⊢ ran
(𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = ran {〈∅, Σ𝑦 ∈ ∅ (𝐹‘𝑦)〉, 〈{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)〉} |
100 | | rnpropg 6114 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ {𝐴} ∈
V) → ran {〈∅, Σ𝑦 ∈ ∅ (𝐹‘𝑦)〉, 〈{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)〉} = {Σ𝑦 ∈ ∅ (𝐹‘𝑦), Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)}) |
101 | 84, 1, 100 | mp2an 688 |
. . . . . . 7
⊢ ran
{〈∅, Σ𝑦
∈ ∅ (𝐹‘𝑦)〉, 〈{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)〉} = {Σ𝑦 ∈ ∅ (𝐹‘𝑦), Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)} |
102 | 99, 101 | eqtri 2766 |
. . . . . 6
⊢ ran
(𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = {Σ𝑦 ∈ ∅ (𝐹‘𝑦), Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)} |
103 | 102 | supeq1i 9136 |
. . . . 5
⊢ sup(ran
(𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) =
sup({Σ𝑦 ∈
∅ (𝐹‘𝑦), Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)}, ℝ*, <
) |
104 | 103 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦
Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ) =
sup({Σ𝑦 ∈
∅ (𝐹‘𝑦), Σ𝑦 ∈ {𝐴} (𝐹‘𝑦)}, ℝ*, <
)) |
105 | 52, 71, 104 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) → (𝐹‘𝐴) = sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, <
)) |
106 | 34, 105 | eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ ¬ (𝐹‘𝐴) = +∞) →
(Σ^‘𝐹) = (𝐹‘𝐴)) |
107 | 22, 106 | pm2.61dan 809 |
1
⊢ (𝜑 →
(Σ^‘𝐹) = (𝐹‘𝐴)) |