Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0sn Structured version   Visualization version   GIF version

Theorem sge0sn 46394
Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0sn.1 (𝜑𝐴𝑉)
sge0sn.2 (𝜑𝐹:{𝐴}⟶(0[,]+∞))
Assertion
Ref Expression
sge0sn (𝜑 → (Σ^𝐹) = (𝐹𝐴))

Proof of Theorem sge0sn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5436 . . . . 5 {𝐴} ∈ V
21a1i 11 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → {𝐴} ∈ V)
3 sge0sn.2 . . . . 5 (𝜑𝐹:{𝐴}⟶(0[,]+∞))
43adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,]+∞))
5 id 22 . . . . . . 7 ((𝐹𝐴) = +∞ → (𝐹𝐴) = +∞)
65eqcomd 2743 . . . . . 6 ((𝐹𝐴) = +∞ → +∞ = (𝐹𝐴))
76adantl 481 . . . . 5 ((𝜑 ∧ (𝐹𝐴) = +∞) → +∞ = (𝐹𝐴))
83ffund 6740 . . . . . . 7 (𝜑 → Fun 𝐹)
98adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = +∞) → Fun 𝐹)
10 sge0sn.1 . . . . . . . . 9 (𝜑𝐴𝑉)
11 snidg 4660 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ {𝐴})
1210, 11syl 17 . . . . . . . 8 (𝜑𝐴 ∈ {𝐴})
133fdmd 6746 . . . . . . . . 9 (𝜑 → dom 𝐹 = {𝐴})
1413eqcomd 2743 . . . . . . . 8 (𝜑 → {𝐴} = dom 𝐹)
1512, 14eleqtrd 2843 . . . . . . 7 (𝜑𝐴 ∈ dom 𝐹)
1615adantr 480 . . . . . 6 ((𝜑 ∧ (𝐹𝐴) = +∞) → 𝐴 ∈ dom 𝐹)
17 fvelrn 7096 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ ran 𝐹)
189, 16, 17syl2anc 584 . . . . 5 ((𝜑 ∧ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ ran 𝐹)
197, 18eqeltrd 2841 . . . 4 ((𝜑 ∧ (𝐹𝐴) = +∞) → +∞ ∈ ran 𝐹)
202, 4, 19sge0pnfval 46388 . . 3 ((𝜑 ∧ (𝐹𝐴) = +∞) → (Σ^𝐹) = +∞)
21 simpr 484 . . 3 ((𝜑 ∧ (𝐹𝐴) = +∞) → (𝐹𝐴) = +∞)
2220, 21eqtr4d 2780 . 2 ((𝜑 ∧ (𝐹𝐴) = +∞) → (Σ^𝐹) = (𝐹𝐴))
231a1i 11 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {𝐴} ∈ V)
243adantr 480 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,]+∞))
25 elsni 4643 . . . . . . . . 9 (+∞ ∈ {(𝐹𝐴)} → +∞ = (𝐹𝐴))
2625eqcomd 2743 . . . . . . . 8 (+∞ ∈ {(𝐹𝐴)} → (𝐹𝐴) = +∞)
2726con3i 154 . . . . . . 7 (¬ (𝐹𝐴) = +∞ → ¬ +∞ ∈ {(𝐹𝐴)})
2827adantl 481 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → ¬ +∞ ∈ {(𝐹𝐴)})
2910, 3rnsnf 45189 . . . . . . . 8 (𝜑 → ran 𝐹 = {(𝐹𝐴)})
3029eqcomd 2743 . . . . . . 7 (𝜑 → {(𝐹𝐴)} = ran 𝐹)
3130adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {(𝐹𝐴)} = ran 𝐹)
3228, 31neleqtrd 2863 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → ¬ +∞ ∈ ran 𝐹)
3324, 32fge0iccico 46385 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐹:{𝐴}⟶(0[,)+∞))
3423, 33sge0reval 46387 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
35 sum0 15757 . . . . . . . 8 Σ𝑦 ∈ ∅ (𝐹𝑦) = 0
3635eqcomi 2746 . . . . . . 7 0 = Σ𝑦 ∈ ∅ (𝐹𝑦)
3736a1i 11 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 0 = Σ𝑦 ∈ ∅ (𝐹𝑦))
38 nfcvd 2906 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝑦(𝐹𝐴))
39 nfv 1914 . . . . . . . 8 𝑦(𝜑 ∧ ¬ (𝐹𝐴) = +∞)
40 fveq2 6906 . . . . . . . . 9 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
4140adantl 481 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐹𝐴) = +∞) ∧ 𝑦 = 𝐴) → (𝐹𝑦) = (𝐹𝐴))
4210adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐴𝑉)
43 rge0ssre 13496 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
44 ax-resscn 11212 . . . . . . . . . 10 ℝ ⊆ ℂ
4543, 44sstri 3993 . . . . . . . . 9 (0[,)+∞) ⊆ ℂ
4642, 11syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → 𝐴 ∈ {𝐴})
4733, 46ffvelcdmd 7105 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ (0[,)+∞))
4845, 47sselid 3981 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) ∈ ℂ)
4938, 39, 41, 42, 48sumsnd 45031 . . . . . . 7 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → Σ𝑦 ∈ {𝐴} (𝐹𝑦) = (𝐹𝐴))
5049eqcomd 2743 . . . . . 6 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
5137, 50preq12d 4741 . . . . 5 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → {0, (𝐹𝐴)} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)})
5251supeq1d 9486 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → sup({0, (𝐹𝐴)}, ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < ))
53 xrltso 13183 . . . . . . . 8 < Or ℝ*
5453a1i 11 . . . . . . 7 (𝜑 → < Or ℝ*)
55 0xr 11308 . . . . . . . 8 0 ∈ ℝ*
5655a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℝ*)
57 iccssxr 13470 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
583, 12ffvelcdmd 7105 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ (0[,]+∞))
5957, 58sselid 3981 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ℝ*)
60 suppr 9511 . . . . . . 7 (( < Or ℝ* ∧ 0 ∈ ℝ* ∧ (𝐹𝐴) ∈ ℝ*) → sup({0, (𝐹𝐴)}, ℝ*, < ) = if((𝐹𝐴) < 0, 0, (𝐹𝐴)))
6154, 56, 59, 60syl3anc 1373 . . . . . 6 (𝜑 → sup({0, (𝐹𝐴)}, ℝ*, < ) = if((𝐹𝐴) < 0, 0, (𝐹𝐴)))
62 pnfxr 11315 . . . . . . . . . . 11 +∞ ∈ ℝ*
6362a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
6456, 63, 583jca 1129 . . . . . . . . 9 (𝜑 → (0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝐴) ∈ (0[,]+∞)))
65 iccgelb 13443 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝐴) ∈ (0[,]+∞)) → 0 ≤ (𝐹𝐴))
6664, 65syl 17 . . . . . . . 8 (𝜑 → 0 ≤ (𝐹𝐴))
6756, 59xrlenltd 11327 . . . . . . . 8 (𝜑 → (0 ≤ (𝐹𝐴) ↔ ¬ (𝐹𝐴) < 0))
6866, 67mpbid 232 . . . . . . 7 (𝜑 → ¬ (𝐹𝐴) < 0)
6968iffalsed 4536 . . . . . 6 (𝜑 → if((𝐹𝐴) < 0, 0, (𝐹𝐴)) = (𝐹𝐴))
7061, 69eqtr2d 2778 . . . . 5 (𝜑 → (𝐹𝐴) = sup({0, (𝐹𝐴)}, ℝ*, < ))
7170adantr 480 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = sup({0, (𝐹𝐴)}, ℝ*, < ))
72 pwsn 4900 . . . . . . . . . . . 12 𝒫 {𝐴} = {∅, {𝐴}}
7372ineq1i 4216 . . . . . . . . . . 11 (𝒫 {𝐴} ∩ Fin) = ({∅, {𝐴}} ∩ Fin)
74 0fi 9082 . . . . . . . . . . . . 13 ∅ ∈ Fin
75 snfi 9083 . . . . . . . . . . . . 13 {𝐴} ∈ Fin
76 prssi 4821 . . . . . . . . . . . . 13 ((∅ ∈ Fin ∧ {𝐴} ∈ Fin) → {∅, {𝐴}} ⊆ Fin)
7774, 75, 76mp2an 692 . . . . . . . . . . . 12 {∅, {𝐴}} ⊆ Fin
78 dfss2 3969 . . . . . . . . . . . . 13 ({∅, {𝐴}} ⊆ Fin ↔ ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}})
7978biimpi 216 . . . . . . . . . . . 12 ({∅, {𝐴}} ⊆ Fin → ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}})
8077, 79ax-mp 5 . . . . . . . . . . 11 ({∅, {𝐴}} ∩ Fin) = {∅, {𝐴}}
8173, 80eqtri 2765 . . . . . . . . . 10 (𝒫 {𝐴} ∩ Fin) = {∅, {𝐴}}
82 mpteq1 5235 . . . . . . . . . 10 ((𝒫 {𝐴} ∩ Fin) = {∅, {𝐴}} → (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)))
8381, 82ax-mp 5 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦))
84 0ex 5307 . . . . . . . . . . . . 13 ∅ ∈ V
8584a1i 11 . . . . . . . . . . . 12 (⊤ → ∅ ∈ V)
861a1i 11 . . . . . . . . . . . 12 (⊤ → {𝐴} ∈ V)
87 sumex 15724 . . . . . . . . . . . . 13 Σ𝑦 ∈ ∅ (𝐹𝑦) ∈ V
8887a1i 11 . . . . . . . . . . . 12 (⊤ → Σ𝑦 ∈ ∅ (𝐹𝑦) ∈ V)
89 sumex 15724 . . . . . . . . . . . . 13 Σ𝑦 ∈ {𝐴} (𝐹𝑦) ∈ V
9089a1i 11 . . . . . . . . . . . 12 (⊤ → Σ𝑦 ∈ {𝐴} (𝐹𝑦) ∈ V)
91 sumeq1 15725 . . . . . . . . . . . . 13 (𝑥 = ∅ → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ ∅ (𝐹𝑦))
9291adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 = ∅) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ ∅ (𝐹𝑦))
93 sumeq1 15725 . . . . . . . . . . . . 13 (𝑥 = {𝐴} → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
9493adantl 481 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 = {𝐴}) → Σ𝑦𝑥 (𝐹𝑦) = Σ𝑦 ∈ {𝐴} (𝐹𝑦))
9585, 86, 88, 90, 92, 94fmptpr 7192 . . . . . . . . . . 11 (⊤ → {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)))
9695mptru 1547 . . . . . . . . . 10 {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦))
9796eqcomi 2746 . . . . . . . . 9 (𝑥 ∈ {∅, {𝐴}} ↦ Σ𝑦𝑥 (𝐹𝑦)) = {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
9883, 97eqtri 2765 . . . . . . . 8 (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
9998rneqi 5948 . . . . . . 7 ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩}
100 rnpropg 6242 . . . . . . . 8 ((∅ ∈ V ∧ {𝐴} ∈ V) → ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)})
10184, 1, 100mp2an 692 . . . . . . 7 ran {⟨∅, Σ𝑦 ∈ ∅ (𝐹𝑦)⟩, ⟨{𝐴}, Σ𝑦 ∈ {𝐴} (𝐹𝑦)⟩} = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}
10299, 101eqtri 2765 . . . . . 6 ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = {Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}
103102supeq1i 9487 . . . . 5 sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < )
104103a1i 11 . . . 4 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) = sup({Σ𝑦 ∈ ∅ (𝐹𝑦), Σ𝑦 ∈ {𝐴} (𝐹𝑦)}, ℝ*, < ))
10552, 71, 1043eqtr4d 2787 . . 3 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (𝐹𝐴) = sup(ran (𝑥 ∈ (𝒫 {𝐴} ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
10634, 105eqtr4d 2780 . 2 ((𝜑 ∧ ¬ (𝐹𝐴) = +∞) → (Σ^𝐹) = (𝐹𝐴))
10722, 106pm2.61dan 813 1 (𝜑 → (Σ^𝐹) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  Vcvv 3480  cin 3950  wss 3951  c0 4333  ifcif 4525  𝒫 cpw 4600  {csn 4626  {cpr 4628  cop 4632   class class class wbr 5143  cmpt 5225   Or wor 5591  dom cdm 5685  ran crn 5686  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  supcsup 9480  cc 11153  cr 11154  0cc0 11155  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  [,)cico 13389  [,]cicc 13390  Σcsu 15722  Σ^csumge0 46377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-sumge0 46378
This theorem is referenced by:  sge0snmpt  46398  sge0sup  46406  sge0snmptf  46452  caratheodorylem1  46541
  Copyright terms: Public domain W3C validator