MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoord Structured version   Visualization version   GIF version

Theorem smoord 8004
Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoord (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))

Proof of Theorem smoord
StepHypRef Expression
1 smodm2 7994 . . 3 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
2 simprl 769 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
3 ordelord 6215 . . 3 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
41, 2, 3syl2an2r 683 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
5 simprr 771 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
6 ordelord 6215 . . 3 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
71, 5, 6syl2an2r 683 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
8 ordtri3or 6225 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷𝐶 = 𝐷𝐷𝐶))
9 simp3 1134 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → 𝐶𝐷)
10 smoel2 8002 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐷)) → (𝐹𝐶) ∈ (𝐹𝐷))
1110expr 459 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ 𝐷𝐴) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
1211adantrl 714 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
13123impia 1113 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐹𝐶) ∈ (𝐹𝐷))
149, 132thd 267 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
15143expia 1117 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
16 ordirr 6211 . . . . . . . . 9 (Ord 𝐶 → ¬ 𝐶𝐶)
174, 16syl 17 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ 𝐶𝐶)
18173adant3 1128 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐶)
19 simp3 1134 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷)
2018, 19neleqtrd 2936 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐷)
21 smofvon2 7995 . . . . . . . . . 10 (Smo 𝐹 → (𝐹𝐶) ∈ On)
2221ad2antlr 725 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ On)
23 eloni 6203 . . . . . . . . 9 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
24 ordirr 6211 . . . . . . . . 9 (Ord (𝐹𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2522, 23, 243syl 18 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
26253adant3 1128 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2719fveq2d 6676 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐹𝐶) = (𝐹𝐷))
2826, 27neleqtrd 2936 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
2920, 282falsed 379 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
30293expia 1117 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶 = 𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
3173adant3 1128 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord 𝐷)
32 ordn2lp 6213 . . . . . . . 8 (Ord 𝐷 → ¬ (𝐷𝐶𝐶𝐷))
3331, 32syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐷𝐶𝐶𝐷))
34 pm3.2 472 . . . . . . . 8 (𝐷𝐶 → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
35343ad2ant3 1131 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
3633, 35mtod 200 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ 𝐶𝐷)
3722, 23syl 17 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
38373adant3 1128 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord (𝐹𝐶))
39 ordn2lp 6213 . . . . . . . 8 (Ord (𝐹𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
4038, 39syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
41 smoel2 8002 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
4241adantrlr 721 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ ((𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
43423impb 1111 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐹𝐷) ∈ (𝐹𝐶))
44 pm3.21 474 . . . . . . . 8 ((𝐹𝐷) ∈ (𝐹𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4543, 44syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4640, 45mtod 200 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
4736, 462falsed 379 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
48473expia 1117 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐷𝐶 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
4915, 30, 483jaod 1424 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶𝐷𝐶 = 𝐷𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
508, 49syl5 34 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
514, 7, 50mp2and 697 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  Ord word 6192  Oncon0 6193   Fn wfn 6352  cfv 6357  Smo wsmo 7984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-ord 6196  df-on 6197  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-smo 7985
This theorem is referenced by:  smoword  8005  smoiso2  8008
  Copyright terms: Public domain W3C validator