MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoord Structured version   Visualization version   GIF version

Theorem smoord 8280
Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoord (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))

Proof of Theorem smoord
StepHypRef Expression
1 smodm2 8270 . . 3 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
2 simprl 770 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
3 ordelord 6324 . . 3 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
41, 2, 3syl2an2r 685 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
5 simprr 772 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
6 ordelord 6324 . . 3 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
71, 5, 6syl2an2r 685 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
8 ordtri3or 6334 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷𝐶 = 𝐷𝐷𝐶))
9 simp3 1138 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → 𝐶𝐷)
10 smoel2 8278 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐷)) → (𝐹𝐶) ∈ (𝐹𝐷))
1110expr 456 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ 𝐷𝐴) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
1211adantrl 716 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
13123impia 1117 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐹𝐶) ∈ (𝐹𝐷))
149, 132thd 265 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
15143expia 1121 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
16 ordirr 6320 . . . . . . . . 9 (Ord 𝐶 → ¬ 𝐶𝐶)
174, 16syl 17 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ 𝐶𝐶)
18173adant3 1132 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐶)
19 simp3 1138 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷)
2018, 19neleqtrd 2851 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐷)
21 smofvon2 8271 . . . . . . . . . 10 (Smo 𝐹 → (𝐹𝐶) ∈ On)
2221ad2antlr 727 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ On)
23 eloni 6312 . . . . . . . . 9 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
24 ordirr 6320 . . . . . . . . 9 (Ord (𝐹𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2522, 23, 243syl 18 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
26253adant3 1132 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2719fveq2d 6821 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐹𝐶) = (𝐹𝐷))
2826, 27neleqtrd 2851 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
2920, 282falsed 376 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
30293expia 1121 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶 = 𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
3173adant3 1132 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord 𝐷)
32 ordn2lp 6322 . . . . . . . 8 (Ord 𝐷 → ¬ (𝐷𝐶𝐶𝐷))
3331, 32syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐷𝐶𝐶𝐷))
34 pm3.2 469 . . . . . . . 8 (𝐷𝐶 → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
35343ad2ant3 1135 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
3633, 35mtod 198 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ 𝐶𝐷)
3722, 23syl 17 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
38373adant3 1132 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord (𝐹𝐶))
39 ordn2lp 6322 . . . . . . . 8 (Ord (𝐹𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
4038, 39syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
41 smoel2 8278 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
4241adantrlr 723 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ ((𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
43423impb 1114 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐹𝐷) ∈ (𝐹𝐶))
44 pm3.21 471 . . . . . . . 8 ((𝐹𝐷) ∈ (𝐹𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4543, 44syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4640, 45mtod 198 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
4736, 462falsed 376 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
48473expia 1121 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐷𝐶 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
4915, 30, 483jaod 1431 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶𝐷𝐶 = 𝐷𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
508, 49syl5 34 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
514, 7, 50mp2and 699 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2110  Ord word 6301  Oncon0 6302   Fn wfn 6472  cfv 6477  Smo wsmo 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-ord 6305  df-on 6306  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-smo 8261
This theorem is referenced by:  smoword  8281  smoiso2  8284
  Copyright terms: Public domain W3C validator