MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoord Structured version   Visualization version   GIF version

Theorem smoord 7670
Description: A strictly monotone ordinal function preserves strict ordering. (Contributed by Mario Carneiro, 4-Mar-2013.)
Assertion
Ref Expression
smoord (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))

Proof of Theorem smoord
StepHypRef Expression
1 smodm2 7660 . . . 4 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
21adantr 472 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐴)
3 simprl 787 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐶𝐴)
4 ordelord 5932 . . 3 ((Ord 𝐴𝐶𝐴) → Ord 𝐶)
52, 3, 4syl2anc 579 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐶)
6 simprr 789 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → 𝐷𝐴)
7 ordelord 5932 . . 3 ((Ord 𝐴𝐷𝐴) → Ord 𝐷)
82, 6, 7syl2anc 579 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord 𝐷)
9 ordtri3or 5942 . . 3 ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷𝐶 = 𝐷𝐷𝐶))
10 simp3 1168 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → 𝐶𝐷)
11 smoel2 7668 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐷𝐴𝐶𝐷)) → (𝐹𝐶) ∈ (𝐹𝐷))
1211expr 448 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ 𝐷𝐴) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
1312adantrl 707 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐹𝐶) ∈ (𝐹𝐷)))
14133impia 1145 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐹𝐶) ∈ (𝐹𝐷))
1510, 142thd 256 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
16153expia 1150 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
17 ordirr 5928 . . . . . . . . 9 (Ord 𝐶 → ¬ 𝐶𝐶)
185, 17syl 17 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ 𝐶𝐶)
19183adant3 1162 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐶)
20 simp3 1168 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷)
2119, 20neleqtrd 2865 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ 𝐶𝐷)
22 smofvon2 7661 . . . . . . . . . 10 (Smo 𝐹 → (𝐹𝐶) ∈ On)
2322ad2antlr 718 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐹𝐶) ∈ On)
24 eloni 5920 . . . . . . . . 9 ((𝐹𝐶) ∈ On → Ord (𝐹𝐶))
25 ordirr 5928 . . . . . . . . 9 (Ord (𝐹𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2623, 24, 253syl 18 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
27263adant3 1162 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐶))
2820fveq2d 6383 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐹𝐶) = (𝐹𝐷))
2927, 28neleqtrd 2865 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
3021, 292falsed 367 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐶 = 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
31303expia 1150 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶 = 𝐷 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
3283adant3 1162 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord 𝐷)
33 ordn2lp 5930 . . . . . . . 8 (Ord 𝐷 → ¬ (𝐷𝐶𝐶𝐷))
3432, 33syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐷𝐶𝐶𝐷))
35 pm3.2 461 . . . . . . . 8 (𝐷𝐶 → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
36353ad2ant3 1165 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 → (𝐷𝐶𝐶𝐷)))
3734, 36mtod 189 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ 𝐶𝐷)
3823, 24syl 17 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → Ord (𝐹𝐶))
39383adant3 1162 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → Ord (𝐹𝐶))
40 ordn2lp 5930 . . . . . . . 8 (Ord (𝐹𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
4139, 40syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶)))
42 smoel2 7668 . . . . . . . . . 10 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
4342adantrlr 714 . . . . . . . . 9 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ ((𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶)) → (𝐹𝐷) ∈ (𝐹𝐶))
44433impb 1143 . . . . . . . 8 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐹𝐷) ∈ (𝐹𝐶))
45 pm3.21 463 . . . . . . . 8 ((𝐹𝐷) ∈ (𝐹𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4644, 45syl 17 . . . . . . 7 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ((𝐹𝐶) ∈ (𝐹𝐷) → ((𝐹𝐶) ∈ (𝐹𝐷) ∧ (𝐹𝐷) ∈ (𝐹𝐶))))
4741, 46mtod 189 . . . . . 6 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → ¬ (𝐹𝐶) ∈ (𝐹𝐷))
4837, 472falsed 367 . . . . 5 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴) ∧ 𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
49483expia 1150 . . . 4 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐷𝐶 → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
5016, 31, 493jaod 1553 . . 3 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶𝐷𝐶 = 𝐷𝐷𝐶) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
519, 50syl5 34 . 2 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → ((Ord 𝐶 ∧ Ord 𝐷) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷))))
525, 8, 51mp2and 690 1 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ∈ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  Ord word 5909  Oncon0 5910   Fn wfn 6065  cfv 6070  Smo wsmo 7650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3599  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-ord 5913  df-on 5914  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-fv 6078  df-smo 7651
This theorem is referenced by:  smoword  7671  smoiso2  7674
  Copyright terms: Public domain W3C validator