Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0split Structured version   Visualization version   GIF version

Theorem sge0split 45791
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0split.a (𝜑𝐴𝑉)
sge0split.b (𝜑𝐵𝑊)
sge0split.u 𝑈 = (𝐴𝐵)
sge0split.in0 (𝜑 → (𝐴𝐵) = ∅)
sge0split.f (𝜑𝐹:𝑈⟶(0[,]+∞))
Assertion
Ref Expression
sge0split (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))

Proof of Theorem sge0split
Dummy variables 𝑎 𝑏 𝑥 𝑧 𝑦 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0split.a . . . . 5 (𝜑𝐴𝑉)
21adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐴𝑉)
3 sge0split.b . . . . 5 (𝜑𝐵𝑊)
43adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐵𝑊)
5 sge0split.u . . . 4 𝑈 = (𝐴𝐵)
6 sge0split.in0 . . . . 5 (𝜑 → (𝐴𝐵) = ∅)
76adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐴𝐵) = ∅)
8 sge0split.f . . . . 5 (𝜑𝐹:𝑈⟶(0[,]+∞))
98adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑈⟶(0[,]+∞))
10 simpr 484 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
112, 4, 5, 7, 9, 10sge0resplit 45788 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
12 unexg 7745 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
131, 3, 12syl2anc 583 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ V)
145, 13eqeltrid 2833 . . . . . . 7 (𝜑𝑈 ∈ V)
1514adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑈 ∈ V)
1615, 9, 10sge0ssre 45779 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝐴)) ∈ ℝ)
1715, 9, 10sge0ssre 45779 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝐵)) ∈ ℝ)
18 rexadd 13237 . . . . 5 (((Σ^‘(𝐹𝐴)) ∈ ℝ ∧ (Σ^‘(𝐹𝐵)) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
1916, 17, 18syl2anc 583 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
2019eqcomd 2734 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
2111, 20eqtrd 2768 . 2 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
22 simpl 482 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → 𝜑)
23 simpr 484 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ¬ (Σ^𝐹) ∈ ℝ)
2414, 8sge0repnf 45768 . . . . . 6 (𝜑 → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2524adantr 480 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2623, 25mtbid 324 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ¬ ¬ (Σ^𝐹) = +∞)
2726notnotrd 133 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = +∞)
2814, 8sge0xrcl 45767 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ*)
2928adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ*)
30 ssun1 4168 . . . . . . . . . 10 𝐴 ⊆ (𝐴𝐵)
3130, 5sseqtrri 4015 . . . . . . . . 9 𝐴𝑈
3231a1i 11 . . . . . . . 8 (𝜑𝐴𝑈)
338, 32fssresd 6758 . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴⟶(0[,]+∞))
341, 33sge0xrcl 45767 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ ℝ*)
35 iccssxr 13433 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
36 ssun2 4169 . . . . . . . . . . 11 𝐵 ⊆ (𝐴𝐵)
3736, 5sseqtrri 4015 . . . . . . . . . 10 𝐵𝑈
3837a1i 11 . . . . . . . . 9 (𝜑𝐵𝑈)
398, 38fssresd 6758 . . . . . . . 8 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
403, 39sge0cl 45763 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ (0[,]+∞))
4135, 40sselid 3976 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ ℝ*)
4234, 41xaddcld 13306 . . . . 5 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ*)
4342adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ*)
44 pnfxr 11292 . . . . . . . . 9 +∞ ∈ ℝ*
45 eqid 2728 . . . . . . . . 9 +∞ = +∞
46 xreqle 44694 . . . . . . . . 9 ((+∞ ∈ ℝ* ∧ +∞ = +∞) → +∞ ≤ +∞)
4744, 45, 46mp2an 691 . . . . . . . 8 +∞ ≤ +∞
4847a1i 11 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ≤ +∞)
4914adantr 480 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝑈 ∈ V)
508adantr 480 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝐹:𝑈⟶(0[,]+∞))
51 rnresss 6015 . . . . . . . . . . 11 ran (𝐹𝐴) ⊆ ran 𝐹
5251sseli 3974 . . . . . . . . . 10 (+∞ ∈ ran (𝐹𝐴) → +∞ ∈ ran 𝐹)
5352adantl 481 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ∈ ran 𝐹)
5449, 50, 53sge0pnfval 45755 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) = +∞)
55 xrge0neqmnf 13455 . . . . . . . . . . . . . 14 ((Σ^‘(𝐹𝐵)) ∈ (0[,]+∞) → (Σ^‘(𝐹𝐵)) ≠ -∞)
5640, 55syl 17 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝐹𝐵)) ≠ -∞)
57 xaddpnf2 13232 . . . . . . . . . . . . 13 (((Σ^‘(𝐹𝐵)) ∈ ℝ* ∧ (Σ^‘(𝐹𝐵)) ≠ -∞) → (+∞ +𝑒^‘(𝐹𝐵))) = +∞)
5841, 56, 57syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (+∞ +𝑒^‘(𝐹𝐵))) = +∞)
5958eqcomd 2734 . . . . . . . . . . 11 (𝜑 → +∞ = (+∞ +𝑒^‘(𝐹𝐵))))
6059adantr 480 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ = (+∞ +𝑒^‘(𝐹𝐵))))
611adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝐴𝑉)
6233adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
63 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ∈ ran (𝐹𝐴))
6461, 62, 63sge0pnfval 45755 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) = +∞)
6564oveq1d 7429 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (+∞ +𝑒^‘(𝐹𝐵))))
6660, 54, 653eqtr4d 2778 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
6766, 54eqtr3d 2770 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = +∞)
6854, 67breq12d 5155 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ↔ +∞ ≤ +∞))
6948, 68mpbird 257 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
7047a1i 11 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ≤ +∞)
7114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝑈 ∈ V)
728adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,]+∞))
73 rnresss 6015 . . . . . . . . . . . . 13 ran (𝐹𝐵) ⊆ ran 𝐹
7473sseli 3974 . . . . . . . . . . . 12 (+∞ ∈ ran (𝐹𝐵) → +∞ ∈ ran 𝐹)
7574adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ∈ ran 𝐹)
7671, 72, 75sge0pnfval 45755 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) = +∞)
773adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝐵𝑊)
7839adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
79 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ∈ ran (𝐹𝐵))
8077, 78, 79sge0pnfval 45755 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = +∞)
8180oveq2d 7430 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) +𝑒 +∞))
821, 33sge0cl 45763 . . . . . . . . . . . . . 14 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ (0[,]+∞))
83 xrge0neqmnf 13455 . . . . . . . . . . . . . 14 ((Σ^‘(𝐹𝐴)) ∈ (0[,]+∞) → (Σ^‘(𝐹𝐴)) ≠ -∞)
8482, 83syl 17 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝐹𝐴)) ≠ -∞)
85 xaddpnf1 13231 . . . . . . . . . . . . 13 (((Σ^‘(𝐹𝐴)) ∈ ℝ* ∧ (Σ^‘(𝐹𝐴)) ≠ -∞) → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8634, 84, 85syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8786adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8881, 87eqtrd 2768 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = +∞)
8976, 88breq12d 5155 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ↔ +∞ ≤ +∞))
9070, 89mpbird 257 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
9190adantlr 714 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
92 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
93 vex 3474 . . . . . . . . . . . . 13 𝑧 ∈ V
94 eqid 2728 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
9594elrnmpt 5952 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦)))
9693, 95ax-mp 5 . . . . . . . . . . . 12 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦))
9792, 96sylib 217 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦))
98 simp3 1136 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑧 = Σ𝑦𝑥 (𝐹𝑦))
99 inss1 4224 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝑥𝐴)
100 inss2 4225 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴) ⊆ 𝐴
10199, 100sstri 3987 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ 𝐴
102 inss2 4225 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝑥𝐵)
103 inss2 4225 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐵) ⊆ 𝐵
104102, 103sstri 3987 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ 𝐵
105101, 104ssini 4227 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝐴𝐵)
106105a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝐴𝐵))
107106, 6sseqtrd 4018 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ ∅)
108 ss0 4394 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ ∅ → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
110109ad3antrrr 729 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
111 indi 4269 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∩ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
112111eqcomi 2737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵))
113112a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵)))
1145eqcomi 2737 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵) = 𝑈
115114ineq2i 4205 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∩ (𝐴𝐵)) = (𝑥𝑈)
116115a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥 ∩ (𝐴𝐵)) = (𝑥𝑈))
117 elinel1 4191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ 𝒫 𝑈)
118 elpwi 4605 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝑈𝑥𝑈)
119117, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥𝑈)
120 df-ss 3962 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈 ↔ (𝑥𝑈) = 𝑥)
121120biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → (𝑥𝑈) = 𝑥)
122119, 121syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝑈) = 𝑥)
123113, 116, 1223eqtrrd 2773 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
124123adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
125 elinel2 4192 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ Fin)
126125adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 ∈ Fin)
127 rge0ssre 13459 . . . . . . . . . . . . . . . . . . . . 21 (0[,)+∞) ⊆ ℝ
1288ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,]+∞))
129 pm4.56 987 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ↔ ¬ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
130129biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
131 elun 4144 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) ↔ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
132130, 131sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)))
133132adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)))
134 rnresun 44547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ran (𝐹 ↾ (𝐴𝐵)) = (ran (𝐹𝐴) ∪ ran (𝐹𝐵))
135134eqcomi 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran (𝐹 ↾ (𝐴𝐵)))
137114reseq2i 5976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ↾ (𝐴𝐵)) = (𝐹𝑈)
138137rneqi 5933 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ran (𝐹 ↾ (𝐴𝐵)) = ran (𝐹𝑈)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran (𝐹 ↾ (𝐴𝐵)) = ran (𝐹𝑈))
140 ffn 6716 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:𝑈⟶(0[,]+∞) → 𝐹 Fn 𝑈)
141 fnresdm 6668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 Fn 𝑈 → (𝐹𝑈) = 𝐹)
1428, 140, 1413syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐹𝑈) = 𝐹)
143142rneqd 5934 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran (𝐹𝑈) = ran 𝐹)
144136, 139, 1433eqtrd 2772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran 𝐹)
145144ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran 𝐹)
146133, 145neleqtrd 2851 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ ran 𝐹)
147128, 146fge0iccico 45752 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,)+∞))
148147ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑈⟶(0[,)+∞))
149119adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑈)
150 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
151149, 150sseldd 3979 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑈)
152151adantll 713 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑈)
153148, 152ffvelcdmd 7089 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
154127, 153sselid 3976 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
155154recnd 11266 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
156110, 124, 126, 155fsumsplit 15713 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
157 infi 9286 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ Fin → (𝑥𝐴) ∈ Fin)
158125, 157syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ Fin)
159158adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ∈ Fin)
160 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)))
161 elinel1 4191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝑥𝐴) → 𝑦𝑥)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → 𝑦𝑥)
163160, 162, 154syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → (𝐹𝑦) ∈ ℝ)
164159, 163fsumrecl 15706 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ)
165 infi 9286 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ Fin → (𝑥𝐵) ∈ Fin)
166125, 165syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ∈ Fin)
167166adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
168 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)))
169 elinel1 4191 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝑥𝐵) → 𝑦𝑥)
170169adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → 𝑦𝑥)
171168, 170, 154syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → (𝐹𝑦) ∈ ℝ)
172167, 171fsumrecl 15706 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ)
173 rexadd 13237 . . . . . . . . . . . . . . . . . . . 20 ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
174164, 172, 173syl2anc 583 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
175174eqcomd 2734 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
176156, 175eqtrd 2768 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
177 ressxr 11282 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℝ*
178177, 164sselid 3976 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ*)
179177, 172sselid 3976 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*)
1801adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → 𝐴𝑉)
18133adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
182 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → ¬ +∞ ∈ ran (𝐹𝐴))
183181, 182fge0iccico 45752 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,)+∞))
184180, 183sge0reval 45754 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
185184eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) = (Σ^‘(𝐹𝐴)))
18634adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) ∈ ℝ*)
187185, 186eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ*)
188187adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ*)
1893adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐵𝑊)
19039adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
191 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ ran (𝐹𝐵))
192190, 191fge0iccico 45752 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,)+∞))
193189, 192sge0reval 45754 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
194193eqcomd 2734 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) = (Σ^‘(𝐹𝐵)))
19541adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) ∈ ℝ*)
196194, 195eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)
197196adantlr 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)
198188, 197jca 511 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*))
199198adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*))
200178, 179, 199jca31 514 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ* ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*) ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)))
201180adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝐴𝑉)
202181adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
203182adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝐴))
204202, 203fge0iccico 45752 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐴):𝐴⟶(0[,)+∞))
205100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ⊆ 𝐴)
206158adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ∈ Fin)
207201, 204, 205, 206fsumlesge0 45759 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ≤ (Σ^‘(𝐹𝐴)))
208100sseli 3974 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑥𝐴) → 𝑦𝐴)
209 fvres 6910 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
210208, 209syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
211210adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
212211sumeq2dv 15675 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦))
213184adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
214212, 213breq12d 5155 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ≤ (Σ^‘(𝐹𝐴)) ↔ Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < )))
215207, 214mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
216215adantlr 714 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
217189adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝐵𝑊)
218190adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
219191adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝐵))
220218, 219fge0iccico 45752 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐵):𝐵⟶(0[,)+∞))
221103a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ⊆ 𝐵)
222166adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
223217, 220, 221, 222fsumlesge0 45759 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) ≤ (Σ^‘(𝐹𝐵)))
224103sseli 3974 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑥𝐵) → 𝑦𝐵)
225 fvres 6910 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
226224, 225syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥𝐵) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
227226adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
228227sumeq2dv 15675 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) = Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦))
229193adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
230228, 229breq12d 5155 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) ≤ (Σ^‘(𝐹𝐵)) ↔ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
231223, 230mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
232231adantllr 718 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
233216, 232jca 511 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
234 xle2add 13264 . . . . . . . . . . . . . . . . . 18 (((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ* ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*) ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)) → ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
235200, 233, 234sylc 65 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
236176, 235eqbrtrd 5164 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
2372363adant3 1130 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
23898, 237eqbrtrd 5164 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
2392383exp 1117 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))))
240239rexlimdv 3149 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
241240adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
24297, 241mpd 15 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
243242ralrimiva 3142 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
244147sge0rnre 45746 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
245177a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ℝ ⊆ ℝ*)
246244, 245sstrd 3988 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
247188, 197xaddcld 13306 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ∈ ℝ*)
248 supxrleub 13331 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ∈ ℝ*) → (sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
249246, 247, 248syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
250243, 249mpbird 257 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
25114ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝑈 ∈ V)
252251, 147sge0reval 45754 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
253184adantr 480 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
254193adantlr 714 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
255253, 254oveq12d 7432 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
256250, 252, 2553brtr4d 5174 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
25791, 256pm2.61dan 812 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
25869, 257pm2.61dan 812 . . . . 5 (𝜑 → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
259258adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
260 pnfge 13136 . . . . . . 7 (((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ* → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
26142, 260syl 17 . . . . . 6 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
262261adantr 480 . . . . 5 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
263 id 22 . . . . . . 7 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
264263eqcomd 2734 . . . . . 6 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
265264adantl 481 . . . . 5 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
266262, 265breqtrd 5168 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ (Σ^𝐹))
26729, 43, 259, 266xrletrid 13160 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
26822, 27, 267syl2anc 583 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
26921, 268pm2.61dan 812 1 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2936  wral 3057  wrex 3066  Vcvv 3470  cun 3943  cin 3944  wss 3945  c0 4318  𝒫 cpw 4598   class class class wbr 5142  cmpt 5225  ran crn 5673  cres 5674   Fn wfn 6537  wf 6538  cfv 6542  (class class class)co 7414  Fincfn 8957  supcsup 9457  cr 11131  0cc0 11132   + caddc 11135  +∞cpnf 11269  -∞cmnf 11270  *cxr 11271   < clt 11272  cle 11273   +𝑒 cxad 13116  [,)cico 13352  [,]cicc 13353  Σcsu 15658  Σ^csumge0 45744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-xadd 13119  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-sumge0 45745
This theorem is referenced by:  sge0splitmpt  45793
  Copyright terms: Public domain W3C validator