Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0split Structured version   Visualization version   GIF version

Theorem sge0split 46400
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0split.a (𝜑𝐴𝑉)
sge0split.b (𝜑𝐵𝑊)
sge0split.u 𝑈 = (𝐴𝐵)
sge0split.in0 (𝜑 → (𝐴𝐵) = ∅)
sge0split.f (𝜑𝐹:𝑈⟶(0[,]+∞))
Assertion
Ref Expression
sge0split (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))

Proof of Theorem sge0split
Dummy variables 𝑎 𝑏 𝑥 𝑧 𝑦 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0split.a . . . . 5 (𝜑𝐴𝑉)
21adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐴𝑉)
3 sge0split.b . . . . 5 (𝜑𝐵𝑊)
43adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐵𝑊)
5 sge0split.u . . . 4 𝑈 = (𝐴𝐵)
6 sge0split.in0 . . . . 5 (𝜑 → (𝐴𝐵) = ∅)
76adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐴𝐵) = ∅)
8 sge0split.f . . . . 5 (𝜑𝐹:𝑈⟶(0[,]+∞))
98adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑈⟶(0[,]+∞))
10 simpr 484 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
112, 4, 5, 7, 9, 10sge0resplit 46397 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
12 unexg 7721 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
131, 3, 12syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ V)
145, 13eqeltrid 2833 . . . . . . 7 (𝜑𝑈 ∈ V)
1514adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑈 ∈ V)
1615, 9, 10sge0ssre 46388 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝐴)) ∈ ℝ)
1715, 9, 10sge0ssre 46388 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝐵)) ∈ ℝ)
18 rexadd 13198 . . . . 5 (((Σ^‘(𝐹𝐴)) ∈ ℝ ∧ (Σ^‘(𝐹𝐵)) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
1916, 17, 18syl2anc 584 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
2019eqcomd 2736 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
2111, 20eqtrd 2765 . 2 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
22 simpl 482 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → 𝜑)
23 simpr 484 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ¬ (Σ^𝐹) ∈ ℝ)
2414, 8sge0repnf 46377 . . . . . 6 (𝜑 → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2524adantr 480 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2623, 25mtbid 324 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ¬ ¬ (Σ^𝐹) = +∞)
2726notnotrd 133 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = +∞)
2814, 8sge0xrcl 46376 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ*)
2928adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ*)
30 ssun1 4143 . . . . . . . . . 10 𝐴 ⊆ (𝐴𝐵)
3130, 5sseqtrri 3998 . . . . . . . . 9 𝐴𝑈
3231a1i 11 . . . . . . . 8 (𝜑𝐴𝑈)
338, 32fssresd 6729 . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴⟶(0[,]+∞))
341, 33sge0xrcl 46376 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ ℝ*)
35 iccssxr 13397 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
36 ssun2 4144 . . . . . . . . . . 11 𝐵 ⊆ (𝐴𝐵)
3736, 5sseqtrri 3998 . . . . . . . . . 10 𝐵𝑈
3837a1i 11 . . . . . . . . 9 (𝜑𝐵𝑈)
398, 38fssresd 6729 . . . . . . . 8 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
403, 39sge0cl 46372 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ (0[,]+∞))
4135, 40sselid 3946 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ ℝ*)
4234, 41xaddcld 13267 . . . . 5 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ*)
4342adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ*)
44 pnfxr 11234 . . . . . . . . 9 +∞ ∈ ℝ*
45 eqid 2730 . . . . . . . . 9 +∞ = +∞
46 xreqle 45308 . . . . . . . . 9 ((+∞ ∈ ℝ* ∧ +∞ = +∞) → +∞ ≤ +∞)
4744, 45, 46mp2an 692 . . . . . . . 8 +∞ ≤ +∞
4847a1i 11 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ≤ +∞)
4914adantr 480 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝑈 ∈ V)
508adantr 480 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝐹:𝑈⟶(0[,]+∞))
51 rnresss 5990 . . . . . . . . . . 11 ran (𝐹𝐴) ⊆ ran 𝐹
5251sseli 3944 . . . . . . . . . 10 (+∞ ∈ ran (𝐹𝐴) → +∞ ∈ ran 𝐹)
5352adantl 481 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ∈ ran 𝐹)
5449, 50, 53sge0pnfval 46364 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) = +∞)
55 xrge0neqmnf 13419 . . . . . . . . . . . . . 14 ((Σ^‘(𝐹𝐵)) ∈ (0[,]+∞) → (Σ^‘(𝐹𝐵)) ≠ -∞)
5640, 55syl 17 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝐹𝐵)) ≠ -∞)
57 xaddpnf2 13193 . . . . . . . . . . . . 13 (((Σ^‘(𝐹𝐵)) ∈ ℝ* ∧ (Σ^‘(𝐹𝐵)) ≠ -∞) → (+∞ +𝑒^‘(𝐹𝐵))) = +∞)
5841, 56, 57syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (+∞ +𝑒^‘(𝐹𝐵))) = +∞)
5958eqcomd 2736 . . . . . . . . . . 11 (𝜑 → +∞ = (+∞ +𝑒^‘(𝐹𝐵))))
6059adantr 480 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ = (+∞ +𝑒^‘(𝐹𝐵))))
611adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝐴𝑉)
6233adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
63 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ∈ ran (𝐹𝐴))
6461, 62, 63sge0pnfval 46364 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) = +∞)
6564oveq1d 7404 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (+∞ +𝑒^‘(𝐹𝐵))))
6660, 54, 653eqtr4d 2775 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
6766, 54eqtr3d 2767 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = +∞)
6854, 67breq12d 5122 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ↔ +∞ ≤ +∞))
6948, 68mpbird 257 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
7047a1i 11 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ≤ +∞)
7114adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝑈 ∈ V)
728adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,]+∞))
73 rnresss 5990 . . . . . . . . . . . . 13 ran (𝐹𝐵) ⊆ ran 𝐹
7473sseli 3944 . . . . . . . . . . . 12 (+∞ ∈ ran (𝐹𝐵) → +∞ ∈ ran 𝐹)
7574adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ∈ ran 𝐹)
7671, 72, 75sge0pnfval 46364 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) = +∞)
773adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝐵𝑊)
7839adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
79 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ∈ ran (𝐹𝐵))
8077, 78, 79sge0pnfval 46364 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = +∞)
8180oveq2d 7405 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) +𝑒 +∞))
821, 33sge0cl 46372 . . . . . . . . . . . . . 14 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ (0[,]+∞))
83 xrge0neqmnf 13419 . . . . . . . . . . . . . 14 ((Σ^‘(𝐹𝐴)) ∈ (0[,]+∞) → (Σ^‘(𝐹𝐴)) ≠ -∞)
8482, 83syl 17 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝐹𝐴)) ≠ -∞)
85 xaddpnf1 13192 . . . . . . . . . . . . 13 (((Σ^‘(𝐹𝐴)) ∈ ℝ* ∧ (Σ^‘(𝐹𝐴)) ≠ -∞) → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8634, 84, 85syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8786adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8881, 87eqtrd 2765 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = +∞)
8976, 88breq12d 5122 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ↔ +∞ ≤ +∞))
9070, 89mpbird 257 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
9190adantlr 715 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
92 simpr 484 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
93 vex 3454 . . . . . . . . . . . . 13 𝑧 ∈ V
94 eqid 2730 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
9594elrnmpt 5924 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦)))
9693, 95ax-mp 5 . . . . . . . . . . . 12 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦))
9792, 96sylib 218 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦))
98 simp3 1138 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑧 = Σ𝑦𝑥 (𝐹𝑦))
99 inss1 4202 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝑥𝐴)
100 inss2 4203 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴) ⊆ 𝐴
10199, 100sstri 3958 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ 𝐴
102 inss2 4203 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝑥𝐵)
103 inss2 4203 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐵) ⊆ 𝐵
104102, 103sstri 3958 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ 𝐵
105101, 104ssini 4205 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝐴𝐵)
106105a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝐴𝐵))
107106, 6sseqtrd 3985 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ ∅)
108 ss0 4367 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ ∅ → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
110109ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
111 indi 4249 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∩ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
112111eqcomi 2739 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵))
113112a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵)))
1145eqcomi 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵) = 𝑈
115114ineq2i 4182 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∩ (𝐴𝐵)) = (𝑥𝑈)
116115a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥 ∩ (𝐴𝐵)) = (𝑥𝑈))
117 elinel1 4166 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ 𝒫 𝑈)
118 elpwi 4572 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝑈𝑥𝑈)
119117, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥𝑈)
120 dfss2 3934 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈 ↔ (𝑥𝑈) = 𝑥)
121120biimpi 216 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → (𝑥𝑈) = 𝑥)
122119, 121syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝑈) = 𝑥)
123113, 116, 1223eqtrrd 2770 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
124123adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
125 elinel2 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ Fin)
126125adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 ∈ Fin)
127 rge0ssre 13423 . . . . . . . . . . . . . . . . . . . . 21 (0[,)+∞) ⊆ ℝ
1288ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,]+∞))
129 pm4.56 990 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ↔ ¬ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
130129biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
131 elun 4118 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) ↔ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
132130, 131sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)))
133132adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)))
134 rnresun 45167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ran (𝐹 ↾ (𝐴𝐵)) = (ran (𝐹𝐴) ∪ ran (𝐹𝐵))
135134eqcomi 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran (𝐹 ↾ (𝐴𝐵)))
137114reseq2i 5949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ↾ (𝐴𝐵)) = (𝐹𝑈)
138137rneqi 5903 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ran (𝐹 ↾ (𝐴𝐵)) = ran (𝐹𝑈)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran (𝐹 ↾ (𝐴𝐵)) = ran (𝐹𝑈))
140 ffn 6690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:𝑈⟶(0[,]+∞) → 𝐹 Fn 𝑈)
141 fnresdm 6639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 Fn 𝑈 → (𝐹𝑈) = 𝐹)
1428, 140, 1413syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐹𝑈) = 𝐹)
143142rneqd 5904 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran (𝐹𝑈) = ran 𝐹)
144136, 139, 1433eqtrd 2769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran 𝐹)
145144ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran 𝐹)
146133, 145neleqtrd 2851 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ ran 𝐹)
147128, 146fge0iccico 46361 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,)+∞))
148147ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑈⟶(0[,)+∞))
149119adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑈)
150 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
151149, 150sseldd 3949 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑈)
152151adantll 714 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑈)
153148, 152ffvelcdmd 7059 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
154127, 153sselid 3946 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
155154recnd 11208 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
156110, 124, 126, 155fsumsplit 15713 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
157 infi 9219 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ Fin → (𝑥𝐴) ∈ Fin)
158125, 157syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ Fin)
159158adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ∈ Fin)
160 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)))
161 elinel1 4166 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝑥𝐴) → 𝑦𝑥)
162161adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → 𝑦𝑥)
163160, 162, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → (𝐹𝑦) ∈ ℝ)
164159, 163fsumrecl 15706 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ)
165 infi 9219 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ Fin → (𝑥𝐵) ∈ Fin)
166125, 165syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ∈ Fin)
167166adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
168 simpl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)))
169 elinel1 4166 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝑥𝐵) → 𝑦𝑥)
170169adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → 𝑦𝑥)
171168, 170, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → (𝐹𝑦) ∈ ℝ)
172167, 171fsumrecl 15706 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ)
173 rexadd 13198 . . . . . . . . . . . . . . . . . . . 20 ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
174164, 172, 173syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
175174eqcomd 2736 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
176156, 175eqtrd 2765 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
177 ressxr 11224 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℝ*
178177, 164sselid 3946 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ*)
179177, 172sselid 3946 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*)
1801adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → 𝐴𝑉)
18133adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
182 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → ¬ +∞ ∈ ran (𝐹𝐴))
183181, 182fge0iccico 46361 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,)+∞))
184180, 183sge0reval 46363 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
185184eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) = (Σ^‘(𝐹𝐴)))
18634adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) ∈ ℝ*)
187185, 186eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ*)
188187adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ*)
1893adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐵𝑊)
19039adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
191 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ ran (𝐹𝐵))
192190, 191fge0iccico 46361 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,)+∞))
193189, 192sge0reval 46363 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
194193eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) = (Σ^‘(𝐹𝐵)))
19541adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) ∈ ℝ*)
196194, 195eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)
197196adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)
198188, 197jca 511 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*))
199198adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*))
200178, 179, 199jca31 514 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ* ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*) ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)))
201180adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝐴𝑉)
202181adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
203182adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝐴))
204202, 203fge0iccico 46361 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐴):𝐴⟶(0[,)+∞))
205100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ⊆ 𝐴)
206158adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ∈ Fin)
207201, 204, 205, 206fsumlesge0 46368 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ≤ (Σ^‘(𝐹𝐴)))
208100sseli 3944 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑥𝐴) → 𝑦𝐴)
209 fvres 6879 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
210208, 209syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
211210adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
212211sumeq2dv 15674 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦))
213184adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
214212, 213breq12d 5122 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ≤ (Σ^‘(𝐹𝐴)) ↔ Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < )))
215207, 214mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
216215adantlr 715 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
217189adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝐵𝑊)
218190adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
219191adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝐵))
220218, 219fge0iccico 46361 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐵):𝐵⟶(0[,)+∞))
221103a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ⊆ 𝐵)
222166adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
223217, 220, 221, 222fsumlesge0 46368 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) ≤ (Σ^‘(𝐹𝐵)))
224103sseli 3944 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑥𝐵) → 𝑦𝐵)
225 fvres 6879 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
226224, 225syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥𝐵) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
227226adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
228227sumeq2dv 15674 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) = Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦))
229193adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
230228, 229breq12d 5122 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) ≤ (Σ^‘(𝐹𝐵)) ↔ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
231223, 230mpbid 232 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
232231adantllr 719 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
233216, 232jca 511 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
234 xle2add 13225 . . . . . . . . . . . . . . . . . 18 (((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ* ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*) ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)) → ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
235200, 233, 234sylc 65 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
236176, 235eqbrtrd 5131 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
2372363adant3 1132 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
23898, 237eqbrtrd 5131 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
2392383exp 1119 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))))
240239rexlimdv 3133 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
241240adantr 480 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
24297, 241mpd 15 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
243242ralrimiva 3126 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
244147sge0rnre 46355 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
245177a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ℝ ⊆ ℝ*)
246244, 245sstrd 3959 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
247188, 197xaddcld 13267 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ∈ ℝ*)
248 supxrleub 13292 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ∈ ℝ*) → (sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
249246, 247, 248syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
250243, 249mpbird 257 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
25114ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝑈 ∈ V)
252251, 147sge0reval 46363 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
253184adantr 480 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
254193adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
255253, 254oveq12d 7407 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
256250, 252, 2553brtr4d 5141 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
25791, 256pm2.61dan 812 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
25869, 257pm2.61dan 812 . . . . 5 (𝜑 → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
259258adantr 480 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
260 pnfge 13096 . . . . . . 7 (((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ* → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
26142, 260syl 17 . . . . . 6 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
262261adantr 480 . . . . 5 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
263 id 22 . . . . . . 7 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
264263eqcomd 2736 . . . . . 6 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
265264adantl 481 . . . . 5 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
266262, 265breqtrd 5135 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ (Σ^𝐹))
26729, 43, 259, 266xrletrid 13121 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
26822, 27, 267syl2anc 584 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
26921, 268pm2.61dan 812 1 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cun 3914  cin 3915  wss 3916  c0 4298  𝒫 cpw 4565   class class class wbr 5109  cmpt 5190  ran crn 5641  cres 5642   Fn wfn 6508  wf 6509  cfv 6513  (class class class)co 7389  Fincfn 8920  supcsup 9397  cr 11073  0cc0 11074   + caddc 11077  +∞cpnf 11211  -∞cmnf 11212  *cxr 11213   < clt 11214  cle 11215   +𝑒 cxad 13076  [,)cico 13314  [,]cicc 13315  Σcsu 15658  Σ^csumge0 46353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-xadd 13079  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659  df-sumge0 46354
This theorem is referenced by:  sge0splitmpt  46402
  Copyright terms: Public domain W3C validator