Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0split Structured version   Visualization version   GIF version

Theorem sge0split 43918
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0split.a (𝜑𝐴𝑉)
sge0split.b (𝜑𝐵𝑊)
sge0split.u 𝑈 = (𝐴𝐵)
sge0split.in0 (𝜑 → (𝐴𝐵) = ∅)
sge0split.f (𝜑𝐹:𝑈⟶(0[,]+∞))
Assertion
Ref Expression
sge0split (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))

Proof of Theorem sge0split
Dummy variables 𝑎 𝑏 𝑥 𝑧 𝑦 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0split.a . . . . 5 (𝜑𝐴𝑉)
21adantr 481 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐴𝑉)
3 sge0split.b . . . . 5 (𝜑𝐵𝑊)
43adantr 481 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐵𝑊)
5 sge0split.u . . . 4 𝑈 = (𝐴𝐵)
6 sge0split.in0 . . . . 5 (𝜑 → (𝐴𝐵) = ∅)
76adantr 481 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (𝐴𝐵) = ∅)
8 sge0split.f . . . . 5 (𝜑𝐹:𝑈⟶(0[,]+∞))
98adantr 481 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝐹:𝑈⟶(0[,]+∞))
10 simpr 485 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) ∈ ℝ)
112, 4, 5, 7, 9, 10sge0resplit 43915 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
12 unexg 7593 . . . . . . . . 9 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
131, 3, 12syl2anc 584 . . . . . . . 8 (𝜑 → (𝐴𝐵) ∈ V)
145, 13eqeltrid 2845 . . . . . . 7 (𝜑𝑈 ∈ V)
1514adantr 481 . . . . . 6 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → 𝑈 ∈ V)
1615, 9, 10sge0ssre 43906 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝐴)) ∈ ℝ)
1715, 9, 10sge0ssre 43906 . . . . 5 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^‘(𝐹𝐵)) ∈ ℝ)
18 rexadd 12965 . . . . 5 (((Σ^‘(𝐹𝐴)) ∈ ℝ ∧ (Σ^‘(𝐹𝐵)) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
1916, 17, 18syl2anc 584 . . . 4 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))))
2019eqcomd 2746 . . 3 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → ((Σ^‘(𝐹𝐴)) + (Σ^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
2111, 20eqtrd 2780 . 2 ((𝜑 ∧ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
22 simpl 483 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → 𝜑)
23 simpr 485 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ¬ (Σ^𝐹) ∈ ℝ)
2414, 8sge0repnf 43895 . . . . . 6 (𝜑 → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2524adantr 481 . . . . 5 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ((Σ^𝐹) ∈ ℝ ↔ ¬ (Σ^𝐹) = +∞))
2623, 25mtbid 324 . . . 4 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → ¬ ¬ (Σ^𝐹) = +∞)
2726notnotrd 133 . . 3 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = +∞)
2814, 8sge0xrcl 43894 . . . . 5 (𝜑 → (Σ^𝐹) ∈ ℝ*)
2928adantr 481 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) ∈ ℝ*)
30 ssun1 4111 . . . . . . . . . 10 𝐴 ⊆ (𝐴𝐵)
3130, 5sseqtrri 3963 . . . . . . . . 9 𝐴𝑈
3231a1i 11 . . . . . . . 8 (𝜑𝐴𝑈)
338, 32fssresd 6639 . . . . . . 7 (𝜑 → (𝐹𝐴):𝐴⟶(0[,]+∞))
341, 33sge0xrcl 43894 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ ℝ*)
35 iccssxr 13161 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
36 ssun2 4112 . . . . . . . . . . 11 𝐵 ⊆ (𝐴𝐵)
3736, 5sseqtrri 3963 . . . . . . . . . 10 𝐵𝑈
3837a1i 11 . . . . . . . . 9 (𝜑𝐵𝑈)
398, 38fssresd 6639 . . . . . . . 8 (𝜑 → (𝐹𝐵):𝐵⟶(0[,]+∞))
403, 39sge0cl 43890 . . . . . . 7 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ (0[,]+∞))
4135, 40sselid 3924 . . . . . 6 (𝜑 → (Σ^‘(𝐹𝐵)) ∈ ℝ*)
4234, 41xaddcld 13034 . . . . 5 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ*)
4342adantr 481 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ*)
44 pnfxr 11030 . . . . . . . . 9 +∞ ∈ ℝ*
45 eqid 2740 . . . . . . . . 9 +∞ = +∞
46 xreqle 42828 . . . . . . . . 9 ((+∞ ∈ ℝ* ∧ +∞ = +∞) → +∞ ≤ +∞)
4744, 45, 46mp2an 689 . . . . . . . 8 +∞ ≤ +∞
4847a1i 11 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ≤ +∞)
4914adantr 481 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝑈 ∈ V)
508adantr 481 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝐹:𝑈⟶(0[,]+∞))
51 rnresss 5926 . . . . . . . . . . 11 ran (𝐹𝐴) ⊆ ran 𝐹
5251sseli 3922 . . . . . . . . . 10 (+∞ ∈ ran (𝐹𝐴) → +∞ ∈ ran 𝐹)
5352adantl 482 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ∈ ran 𝐹)
5449, 50, 53sge0pnfval 43882 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) = +∞)
55 xrge0neqmnf 13183 . . . . . . . . . . . . . 14 ((Σ^‘(𝐹𝐵)) ∈ (0[,]+∞) → (Σ^‘(𝐹𝐵)) ≠ -∞)
5640, 55syl 17 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝐹𝐵)) ≠ -∞)
57 xaddpnf2 12960 . . . . . . . . . . . . 13 (((Σ^‘(𝐹𝐵)) ∈ ℝ* ∧ (Σ^‘(𝐹𝐵)) ≠ -∞) → (+∞ +𝑒^‘(𝐹𝐵))) = +∞)
5841, 56, 57syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (+∞ +𝑒^‘(𝐹𝐵))) = +∞)
5958eqcomd 2746 . . . . . . . . . . 11 (𝜑 → +∞ = (+∞ +𝑒^‘(𝐹𝐵))))
6059adantr 481 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ = (+∞ +𝑒^‘(𝐹𝐵))))
611adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → 𝐴𝑉)
6233adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
63 simpr 485 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → +∞ ∈ ran (𝐹𝐴))
6461, 62, 63sge0pnfval 43882 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) = +∞)
6564oveq1d 7286 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (+∞ +𝑒^‘(𝐹𝐵))))
6660, 54, 653eqtr4d 2790 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
6766, 54eqtr3d 2782 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = +∞)
6854, 67breq12d 5092 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → ((Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ↔ +∞ ≤ +∞))
6948, 68mpbird 256 . . . . . 6 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
7047a1i 11 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ≤ +∞)
7114adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝑈 ∈ V)
728adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,]+∞))
73 rnresss 5926 . . . . . . . . . . . . 13 ran (𝐹𝐵) ⊆ ran 𝐹
7473sseli 3922 . . . . . . . . . . . 12 (+∞ ∈ ran (𝐹𝐵) → +∞ ∈ ran 𝐹)
7574adantl 482 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ∈ ran 𝐹)
7671, 72, 75sge0pnfval 43882 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) = +∞)
773adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → 𝐵𝑊)
7839adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
79 simpr 485 . . . . . . . . . . . . 13 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → +∞ ∈ ran (𝐹𝐵))
8077, 78, 79sge0pnfval 43882 . . . . . . . . . . . 12 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = +∞)
8180oveq2d 7287 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = ((Σ^‘(𝐹𝐴)) +𝑒 +∞))
821, 33sge0cl 43890 . . . . . . . . . . . . . 14 (𝜑 → (Σ^‘(𝐹𝐴)) ∈ (0[,]+∞))
83 xrge0neqmnf 13183 . . . . . . . . . . . . . 14 ((Σ^‘(𝐹𝐴)) ∈ (0[,]+∞) → (Σ^‘(𝐹𝐴)) ≠ -∞)
8482, 83syl 17 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝐹𝐴)) ≠ -∞)
85 xaddpnf1 12959 . . . . . . . . . . . . 13 (((Σ^‘(𝐹𝐴)) ∈ ℝ* ∧ (Σ^‘(𝐹𝐴)) ≠ -∞) → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8634, 84, 85syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8786adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒 +∞) = +∞)
8881, 87eqtrd 2780 . . . . . . . . . 10 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = +∞)
8976, 88breq12d 5092 . . . . . . . . 9 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → ((Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ↔ +∞ ≤ +∞))
9070, 89mpbird 256 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
9190adantlr 712 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
92 simpr 485 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)))
93 vex 3435 . . . . . . . . . . . . 13 𝑧 ∈ V
94 eqid 2740 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) = (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))
9594elrnmpt 5864 . . . . . . . . . . . . 13 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦)))
9693, 95ax-mp 5 . . . . . . . . . . . 12 (𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ↔ ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦))
9792, 96sylib 217 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → ∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦))
98 simp3 1137 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑧 = Σ𝑦𝑥 (𝐹𝑦))
99 inss1 4168 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝑥𝐴)
100 inss2 4169 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐴) ⊆ 𝐴
10199, 100sstri 3935 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ 𝐴
102 inss2 4169 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝑥𝐵)
103 inss2 4169 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥𝐵) ⊆ 𝐵
104102, 103sstri 3935 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ 𝐵
105101, 104ssini 4171 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝐴𝐵)
106105a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ (𝐴𝐵))
107106, 6sseqtrd 3966 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ ∅)
108 ss0 4338 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥𝐴) ∩ (𝑥𝐵)) ⊆ ∅ → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
110109ad3antrrr 727 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((𝑥𝐴) ∩ (𝑥𝐵)) = ∅)
111 indi 4213 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∩ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
112111eqcomi 2749 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵))
113112a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → ((𝑥𝐴) ∪ (𝑥𝐵)) = (𝑥 ∩ (𝐴𝐵)))
1145eqcomi 2749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵) = 𝑈
115114ineq2i 4149 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∩ (𝐴𝐵)) = (𝑥𝑈)
116115a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥 ∩ (𝐴𝐵)) = (𝑥𝑈))
117 elinel1 4134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ 𝒫 𝑈)
118 elpwi 4548 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ 𝒫 𝑈𝑥𝑈)
119117, 118syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥𝑈)
120 df-ss 3909 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥𝑈 ↔ (𝑥𝑈) = 𝑥)
121120biimpi 215 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑈 → (𝑥𝑈) = 𝑥)
122119, 121syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝑈) = 𝑥)
123113, 116, 1223eqtrrd 2785 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
124123adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 = ((𝑥𝐴) ∪ (𝑥𝐵)))
125 elinel2 4135 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → 𝑥 ∈ Fin)
126125adantl 482 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑥 ∈ Fin)
127 rge0ssre 13187 . . . . . . . . . . . . . . . . . . . . 21 (0[,)+∞) ⊆ ℝ
1288ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,]+∞))
129 pm4.56 986 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ↔ ¬ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
130129biimpi 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
131 elun 4088 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (+∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) ↔ (+∞ ∈ ran (𝐹𝐴) ∨ +∞ ∈ ran (𝐹𝐵)))
132130, 131sylnibr 329 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ +∞ ∈ ran (𝐹𝐴) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)))
133132adantll 711 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ (ran (𝐹𝐴) ∪ ran (𝐹𝐵)))
134 rnresun 42686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ran (𝐹 ↾ (𝐴𝐵)) = (ran (𝐹𝐴) ∪ ran (𝐹𝐵))
135134eqcomi 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran (𝐹 ↾ (𝐴𝐵))
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran (𝐹 ↾ (𝐴𝐵)))
137114reseq2i 5887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 ↾ (𝐴𝐵)) = (𝐹𝑈)
138137rneqi 5845 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ran (𝐹 ↾ (𝐴𝐵)) = ran (𝐹𝑈)
139138a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran (𝐹 ↾ (𝐴𝐵)) = ran (𝐹𝑈))
140 ffn 6598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹:𝑈⟶(0[,]+∞) → 𝐹 Fn 𝑈)
141 fnresdm 6549 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐹 Fn 𝑈 → (𝐹𝑈) = 𝐹)
1428, 140, 1413syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐹𝑈) = 𝐹)
143142rneqd 5846 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ran (𝐹𝑈) = ran 𝐹)
144136, 139, 1433eqtrd 2784 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran 𝐹)
145144ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (ran (𝐹𝐴) ∪ ran (𝐹𝐵)) = ran 𝐹)
146133, 145neleqtrd 2862 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ ran 𝐹)
147128, 146fge0iccico 43879 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐹:𝑈⟶(0[,)+∞))
148147ad2antrr 723 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝐹:𝑈⟶(0[,)+∞))
149119adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑥𝑈)
150 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑥)
151149, 150sseldd 3927 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑦𝑥) → 𝑦𝑈)
152151adantll 711 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → 𝑦𝑈)
153148, 152ffvelrnd 6959 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ (0[,)+∞))
154127, 153sselid 3924 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℝ)
155154recnd 11004 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦𝑥) → (𝐹𝑦) ∈ ℂ)
156110, 124, 126, 155fsumsplit 15451 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
157 infi 9021 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ Fin → (𝑥𝐴) ∈ Fin)
158125, 157syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐴) ∈ Fin)
159158adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ∈ Fin)
160 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)))
161 elinel1 4134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝑥𝐴) → 𝑦𝑥)
162161adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → 𝑦𝑥)
163160, 162, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → (𝐹𝑦) ∈ ℝ)
164159, 163fsumrecl 15444 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ)
165 infi 9021 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ Fin → (𝑥𝐵) ∈ Fin)
166125, 165syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑥𝐵) ∈ Fin)
167166adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
168 simpl 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)))
169 elinel1 4134 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (𝑥𝐵) → 𝑦𝑥)
170169adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → 𝑦𝑥)
171168, 170, 154syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → (𝐹𝑦) ∈ ℝ)
172167, 171fsumrecl 15444 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ)
173 rexadd 12965 . . . . . . . . . . . . . . . . . . . 20 ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
174164, 172, 173syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
175174eqcomd 2746 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) + Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
176156, 175eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) = (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)))
177 ressxr 11020 . . . . . . . . . . . . . . . . . . . 20 ℝ ⊆ ℝ*
178177, 164sselid 3924 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ*)
179177, 172sselid 3924 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*)
1801adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → 𝐴𝑉)
18133adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
182 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → ¬ +∞ ∈ ran (𝐹𝐴))
183181, 182fge0iccico 43879 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (𝐹𝐴):𝐴⟶(0[,)+∞))
184180, 183sge0reval 43881 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
185184eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) = (Σ^‘(𝐹𝐴)))
18634adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^‘(𝐹𝐴)) ∈ ℝ*)
187185, 186eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ*)
188187adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ*)
1893adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝐵𝑊)
19039adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
191 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ¬ +∞ ∈ ran (𝐹𝐵))
192190, 191fge0iccico 43879 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝐹𝐵):𝐵⟶(0[,)+∞))
193189, 192sge0reval 43881 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
194193eqcomd 2746 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) = (Σ^‘(𝐹𝐵)))
19541adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) ∈ ℝ*)
196194, 195eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)
197196adantlr 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)
198188, 197jca 512 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*))
199198adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*))
200178, 179, 199jca31 515 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ* ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*) ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)))
201180adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝐴𝑉)
202181adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐴):𝐴⟶(0[,]+∞))
203182adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝐴))
204202, 203fge0iccico 43879 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐴):𝐴⟶(0[,)+∞))
205100a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ⊆ 𝐴)
206158adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐴) ∈ Fin)
207201, 204, 205, 206fsumlesge0 43886 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ≤ (Σ^‘(𝐹𝐴)))
208100sseli 3922 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑥𝐴) → 𝑦𝐴)
209 fvres 6790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
210208, 209syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
211210adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐴)) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
212211sumeq2dv 15413 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) = Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦))
213184adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
214212, 213breq12d 5092 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)((𝐹𝐴)‘𝑦) ≤ (Σ^‘(𝐹𝐴)) ↔ Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < )))
215207, 214mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
216215adantlr 712 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
217189adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → 𝐵𝑊)
218190adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐵):𝐵⟶(0[,]+∞))
219191adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → ¬ +∞ ∈ ran (𝐹𝐵))
220218, 219fge0iccico 43879 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝐹𝐵):𝐵⟶(0[,)+∞))
221103a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ⊆ 𝐵)
222166adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑥𝐵) ∈ Fin)
223217, 220, 221, 222fsumlesge0 43886 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) ≤ (Σ^‘(𝐹𝐵)))
224103sseli 3922 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (𝑥𝐵) → 𝑦𝐵)
225 fvres 6790 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
226224, 225syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (𝑥𝐵) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
227226adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) ∧ 𝑦 ∈ (𝑥𝐵)) → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
228227sumeq2dv 15413 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) = Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦))
229193adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
230228, 229breq12d 5092 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐵)((𝐹𝐵)‘𝑦) ≤ (Σ^‘(𝐹𝐵)) ↔ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
231223, 230mpbid 231 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
232231adantllr 716 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
233216, 232jca 512 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
234 xle2add 12992 . . . . . . . . . . . . . . . . . 18 (((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ∈ ℝ* ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ∈ ℝ*) ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∈ ℝ* ∧ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ) ∈ ℝ*)) → ((Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) ≤ sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) ∧ Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦) ≤ sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
235200, 233, 234sylc 65 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → (Σ𝑦 ∈ (𝑥𝐴)(𝐹𝑦) +𝑒 Σ𝑦 ∈ (𝑥𝐵)(𝐹𝑦)) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
236176, 235eqbrtrd 5101 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
2372363adant3 1131 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → Σ𝑦𝑥 (𝐹𝑦) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
23898, 237eqbrtrd 5101 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑥 ∈ (𝒫 𝑈 ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (𝐹𝑦)) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
2392383exp 1118 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (𝑥 ∈ (𝒫 𝑈 ∩ Fin) → (𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))))
240239rexlimdv 3214 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
241240adantr 481 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → (∃𝑥 ∈ (𝒫 𝑈 ∩ Fin)𝑧 = Σ𝑦𝑥 (𝐹𝑦) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
24297, 241mpd 15 . . . . . . . . . 10 ((((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) ∧ 𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))) → 𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
243242ralrimiva 3110 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
244147sge0rnre 43873 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ)
245177a1i 11 . . . . . . . . . . 11 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ℝ ⊆ ℝ*)
246244, 245sstrd 3936 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ*)
247188, 197xaddcld 13034 . . . . . . . . . 10 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ∈ ℝ*)
248 supxrleub 13059 . . . . . . . . . 10 ((ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)) ⊆ ℝ* ∧ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ∈ ℝ*) → (sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
249246, 247, 248syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )) ↔ ∀𝑧 ∈ ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦))𝑧 ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))))
250243, 249mpbird 256 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ) ≤ (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
25114ad2antrr 723 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → 𝑈 ∈ V)
252251, 147sge0reval 43881 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑈 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
253184adantr 481 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐴)) = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ))
254193adantlr 712 . . . . . . . . 9 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^‘(𝐹𝐵)) = sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < ))
255253, 254oveq12d 7289 . . . . . . . 8 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) = (sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑏𝑎 ((𝐹𝐴)‘𝑏)), ℝ*, < ) +𝑒 sup(ran (𝑐 ∈ (𝒫 𝐵 ∩ Fin) ↦ Σ𝑑𝑐 ((𝐹𝐵)‘𝑑)), ℝ*, < )))
256250, 252, 2553brtr4d 5111 . . . . . . 7 (((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) ∧ ¬ +∞ ∈ ran (𝐹𝐵)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
25791, 256pm2.61dan 810 . . . . . 6 ((𝜑 ∧ ¬ +∞ ∈ ran (𝐹𝐴)) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
25869, 257pm2.61dan 810 . . . . 5 (𝜑 → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
259258adantr 481 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) ≤ ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
260 pnfge 12865 . . . . . . 7 (((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ∈ ℝ* → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
26142, 260syl 17 . . . . . 6 (𝜑 → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
262261adantr 481 . . . . 5 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ +∞)
263 id 22 . . . . . . 7 ((Σ^𝐹) = +∞ → (Σ^𝐹) = +∞)
264263eqcomd 2746 . . . . . 6 ((Σ^𝐹) = +∞ → +∞ = (Σ^𝐹))
265264adantl 482 . . . . 5 ((𝜑 ∧ (Σ^𝐹) = +∞) → +∞ = (Σ^𝐹))
266262, 265breqtrd 5105 . . . 4 ((𝜑 ∧ (Σ^𝐹) = +∞) → ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))) ≤ (Σ^𝐹))
26729, 43, 259, 266xrletrid 12888 . . 3 ((𝜑 ∧ (Σ^𝐹) = +∞) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
26822, 27, 267syl2anc 584 . 2 ((𝜑 ∧ ¬ (Σ^𝐹) ∈ ℝ) → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
26921, 268pm2.61dan 810 1 (𝜑 → (Σ^𝐹) = ((Σ^‘(𝐹𝐴)) +𝑒^‘(𝐹𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  Vcvv 3431  cun 3890  cin 3891  wss 3892  c0 4262  𝒫 cpw 4539   class class class wbr 5079  cmpt 5162  ran crn 5591  cres 5592   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7271  Fincfn 8716  supcsup 9177  cr 10871  0cc0 10872   + caddc 10875  +∞cpnf 11007  -∞cmnf 11008  *cxr 11009   < clt 11010  cle 11011   +𝑒 cxad 12845  [,)cico 13080  [,]cicc 13081  Σcsu 15395  Σ^csumge0 43871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-xadd 12848  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-sumge0 43872
This theorem is referenced by:  sge0splitmpt  43920
  Copyright terms: Public domain W3C validator