Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem61 Structured version   Visualization version   GIF version

Theorem fourierdlem61 46123
Description: Given a differentiable function 𝐹, with finite limit of the derivative at 𝐴 the derived function 𝐻 has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem61.a (𝜑𝐴 ∈ ℝ)
fourierdlem61.b (𝜑𝐵 ∈ ℝ)
fourierdlem61.altb (𝜑𝐴 < 𝐵)
fourierdlem61.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
fourierdlem61.y (𝜑𝑌 ∈ (𝐹 lim 𝐴))
fourierdlem61.g 𝐺 = (ℝ D 𝐹)
fourierdlem61.domg (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
fourierdlem61.e (𝜑𝐸 ∈ (𝐺 lim 𝐴))
fourierdlem61.h 𝐻 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
fourierdlem61.n 𝑁 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
fourierdlem61.d 𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
Assertion
Ref Expression
fourierdlem61 (𝜑𝐸 ∈ (𝐻 lim 0))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐸,𝑠   𝐹,𝑠   𝐺,𝑠   𝑁,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem61
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0red 11262 . . 3 (𝜑 → 0 ∈ ℝ)
2 fourierdlem61.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 fourierdlem61.a . . . . 5 (𝜑𝐴 ∈ ℝ)
42, 3resubcld 11689 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ)
54rexrd 11309 . . 3 (𝜑 → (𝐵𝐴) ∈ ℝ*)
6 fourierdlem61.altb . . . 4 (𝜑𝐴 < 𝐵)
73, 2posdifd 11848 . . . 4 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
86, 7mpbid 232 . . 3 (𝜑 → 0 < (𝐵𝐴))
9 fourierdlem61.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
109adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
113rexrd 11309 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1211adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℝ*)
132rexrd 11309 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1413adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐵 ∈ ℝ*)
153adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℝ)
16 elioore 13414 . . . . . . . . 9 (𝑠 ∈ (0(,)(𝐵𝐴)) → 𝑠 ∈ ℝ)
1716adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ ℝ)
1815, 17readdcld 11288 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ ℝ)
193recnd 11287 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2019addridd 11459 . . . . . . . . . 10 (𝜑 → (𝐴 + 0) = 𝐴)
2120eqcomd 2741 . . . . . . . . 9 (𝜑𝐴 = (𝐴 + 0))
2221adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 = (𝐴 + 0))
23 0red 11262 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 ∈ ℝ)
24 0xr 11306 . . . . . . . . . . 11 0 ∈ ℝ*
2524a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 ∈ ℝ*)
265adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐵𝐴) ∈ ℝ*)
27 simpr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ (0(,)(𝐵𝐴)))
2825, 26, 27ioogtlbd 45503 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 < 𝑠)
2923, 17, 15, 28ltadd2dd 11418 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 0) < (𝐴 + 𝑠))
3022, 29eqbrtrd 5170 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 < (𝐴 + 𝑠))
314adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐵𝐴) ∈ ℝ)
3225, 26, 27iooltubd 45497 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 < (𝐵𝐴))
3317, 31, 15, 32ltadd2dd 11418 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) < (𝐴 + (𝐵𝐴)))
342recnd 11287 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3519, 34pncan3d 11621 . . . . . . . . 9 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
3635adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + (𝐵𝐴)) = 𝐵)
3733, 36breqtrd 5174 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) < 𝐵)
3812, 14, 18, 30, 37eliood 45451 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ (𝐴(,)𝐵))
3910, 38ffvelcdmd 7105 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐹‘(𝐴 + 𝑠)) ∈ ℝ)
40 ioossre 13445 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ℝ
4140a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
42 ax-resscn 11210 . . . . . . . 8 ℝ ⊆ ℂ
4341, 42sstrdi 4008 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
44 eqid 2735 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544, 13, 3, 6lptioo1cn 45602 . . . . . . 7 (𝜑𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
46 fourierdlem61.y . . . . . . 7 (𝜑𝑌 ∈ (𝐹 lim 𝐴))
479, 43, 45, 46limcrecl 45585 . . . . . 6 (𝜑𝑌 ∈ ℝ)
4847adantr 480 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑌 ∈ ℝ)
4939, 48resubcld 11689 . . . 4 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐹‘(𝐴 + 𝑠)) − 𝑌) ∈ ℝ)
50 fourierdlem61.n . . . 4 𝑁 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
5149, 50fmptd 7134 . . 3 (𝜑𝑁:(0(,)(𝐵𝐴))⟶ℝ)
52 fourierdlem61.d . . . 4 𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
5317, 52fmptd 7134 . . 3 (𝜑𝐷:(0(,)(𝐵𝐴))⟶ℝ)
5450oveq2i 7442 . . . . . 6 (ℝ D 𝑁) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)))
5554a1i 11 . . . . 5 (𝜑 → (ℝ D 𝑁) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))))
5655dmeqd 5919 . . . 4 (𝜑 → dom (ℝ D 𝑁) = dom (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))))
57 reelprrecn 11245 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
5857a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
5939recnd 11287 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐹‘(𝐴 + 𝑠)) ∈ ℂ)
60 dvfre 26004 . . . . . . . . . . 11 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
619, 41, 60syl2anc 584 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
62 fourierdlem61.g . . . . . . . . . . . 12 𝐺 = (ℝ D 𝐹)
6362a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (ℝ D 𝐹))
6463feq1d 6721 . . . . . . . . . 10 (𝜑 → (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ))
6561, 64mpbird 257 . . . . . . . . 9 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
6665adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
6763eqcomd 2741 . . . . . . . . . . . 12 (𝜑 → (ℝ D 𝐹) = 𝐺)
6867dmeqd 5919 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) = dom 𝐺)
69 fourierdlem61.domg . . . . . . . . . . 11 (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
7068, 69eqtr2d 2776 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7170adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7238, 71eleqtrd 2841 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ dom (ℝ D 𝐹))
7366, 72ffvelcdmd 7105 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) ∈ ℝ)
74 1red 11260 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 1 ∈ ℝ)
759ffvelcdmda 7104 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
7675recnd 11287 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
7770feq2d 6723 . . . . . . . . . . 11 (𝜑 → (𝐺:(𝐴(,)𝐵)⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
7865, 77mpbird 257 . . . . . . . . . 10 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
7978ffvelcdmda 7104 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℝ)
8019adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℂ)
8119adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝐴 ∈ ℂ)
82 0red 11262 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
8358, 19dvmptc 26011 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝐴)) = (𝑠 ∈ ℝ ↦ 0))
84 ioossre 13445 . . . . . . . . . . . . 13 (0(,)(𝐵𝐴)) ⊆ ℝ
8584a1i 11 . . . . . . . . . . . 12 (𝜑 → (0(,)(𝐵𝐴)) ⊆ ℝ)
86 tgioo4 45526 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
87 iooretop 24802 . . . . . . . . . . . . 13 (0(,)(𝐵𝐴)) ∈ (topGen‘ran (,))
8887a1i 11 . . . . . . . . . . . 12 (𝜑 → (0(,)(𝐵𝐴)) ∈ (topGen‘ran (,)))
8958, 81, 82, 83, 85, 86, 44, 88dvmptres 26016 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 0))
9017recnd 11287 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ ℂ)
91 recn 11243 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
9291adantl 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
93 1red 11260 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
9458dvmptid 26010 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
9558, 92, 93, 94, 85, 86, 44, 88dvmptres 26016 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
9658, 80, 23, 89, 90, 74, 95dvmptadd 26013 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (0 + 1)))
97 0p1e1 12386 . . . . . . . . . . 11 (0 + 1) = 1
9897mpteq2i 5253 . . . . . . . . . 10 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (0 + 1)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)
9996, 98eqtrdi 2791 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
1009feqmptd 6977 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
101100eqcomd 2741 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
102101oveq2d 7447 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
10378feqmptd 6977 . . . . . . . . . 10 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
104102, 67, 1033eqtrd 2779 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
105 fveq2 6907 . . . . . . . . 9 (𝑥 = (𝐴 + 𝑠) → (𝐹𝑥) = (𝐹‘(𝐴 + 𝑠)))
106 fveq2 6907 . . . . . . . . 9 (𝑥 = (𝐴 + 𝑠) → (𝐺𝑥) = (𝐺‘(𝐴 + 𝑠)))
10758, 58, 38, 74, 76, 79, 99, 104, 105, 106dvmptco 26025 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) · 1)))
10873recnd 11287 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) ∈ ℂ)
109108mulridd 11276 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) · 1) = (𝐺‘(𝐴 + 𝑠)))
110109mpteq2dva 5248 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) · 1)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
111107, 110eqtrd 2775 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
112 limccl 25925 . . . . . . . . 9 (𝐹 lim 𝐴) ⊆ ℂ
113112, 46sselid 3993 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
114113adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑌 ∈ ℂ)
115113adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑌 ∈ ℂ)
11658, 113dvmptc 26011 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑌)) = (𝑠 ∈ ℝ ↦ 0))
11758, 115, 82, 116, 85, 86, 44, 88dvmptres 26016 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 0))
11858, 59, 73, 111, 114, 23, 117dvmptsub 26020 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) − 0)))
119108subid1d 11607 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) − 0) = (𝐺‘(𝐴 + 𝑠)))
120119mpteq2dva 5248 . . . . . 6 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) − 0)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
121118, 120eqtrd 2775 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
122121dmeqd 5919 . . . 4 (𝜑 → dom (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
12373ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑠 ∈ (0(,)(𝐵𝐴))(𝐺‘(𝐴 + 𝑠)) ∈ ℝ)
124 dmmptg 6264 . . . . 5 (∀𝑠 ∈ (0(,)(𝐵𝐴))(𝐺‘(𝐴 + 𝑠)) ∈ ℝ → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (0(,)(𝐵𝐴)))
125123, 124syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (0(,)(𝐵𝐴)))
12656, 122, 1253eqtrd 2779 . . 3 (𝜑 → dom (ℝ D 𝑁) = (0(,)(𝐵𝐴)))
12752a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠))
128127oveq2d 7447 . . . . . 6 (𝜑 → (ℝ D 𝐷) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)))
129128, 95eqtrd 2775 . . . . 5 (𝜑 → (ℝ D 𝐷) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
130129dmeqd 5919 . . . 4 (𝜑 → dom (ℝ D 𝐷) = dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
13174ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑠 ∈ (0(,)(𝐵𝐴))1 ∈ ℝ)
132 dmmptg 6264 . . . . 5 (∀𝑠 ∈ (0(,)(𝐵𝐴))1 ∈ ℝ → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (0(,)(𝐵𝐴)))
133131, 132syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (0(,)(𝐵𝐴)))
134130, 133eqtrd 2775 . . 3 (𝜑 → dom (ℝ D 𝐷) = (0(,)(𝐵𝐴)))
135 eqid 2735 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))
136 eqid 2735 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌)
137 eqid 2735 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
13838adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) ≠ 𝐴)) → (𝐴 + 𝑠) ∈ (𝐴(,)𝐵))
139 eqid 2735 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴)
140 eqid 2735 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
141 eqid 2735 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))
14285, 42sstrdi 4008 . . . . . . . . 9 (𝜑 → (0(,)(𝐵𝐴)) ⊆ ℂ)
1431recnd 11287 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
144139, 142, 19, 143constlimc 45580 . . . . . . . 8 (𝜑𝐴 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴) lim 0))
145142, 140, 143idlimc 45582 . . . . . . . 8 (𝜑 → 0 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠) lim 0))
146139, 140, 141, 80, 90, 144, 145addlimc 45604 . . . . . . 7 (𝜑 → (𝐴 + 0) ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) lim 0))
14721, 146eqeltrd 2839 . . . . . 6 (𝜑𝐴 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) lim 0))
148100oveq1d 7446 . . . . . . 7 (𝜑 → (𝐹 lim 𝐴) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐴))
14946, 148eleqtrd 2841 . . . . . 6 (𝜑𝑌 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐴))
150 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐹‘(𝐴 + 𝑠)) = 𝑌) → (𝐴 + 𝑠) = 𝐴)
15115, 30gtned 11394 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ≠ 𝐴)
152151neneqd 2943 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ¬ (𝐴 + 𝑠) = 𝐴)
153152adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → ¬ (𝐴 + 𝑠) = 𝐴)
154153adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐹‘(𝐴 + 𝑠)) = 𝑌) → ¬ (𝐴 + 𝑠) = 𝐴)
155150, 154condan 818 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → (𝐹‘(𝐴 + 𝑠)) = 𝑌)
156138, 76, 147, 149, 105, 155limcco 25943 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠))) lim 0))
157136, 142, 113, 143constlimc 45580 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌) lim 0))
158135, 136, 137, 59, 114, 156, 157sublimc 45608 . . . 4 (𝜑 → (𝑌𝑌) ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0))
159113subidd 11606 . . . 4 (𝜑 → (𝑌𝑌) = 0)
16050eqcomi 2744 . . . . . 6 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) = 𝑁
161160oveq1i 7441 . . . . 5 ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0)
162161a1i 11 . . . 4 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0))
163158, 159, 1623eltr3d 2853 . . 3 (𝜑 → 0 ∈ (𝑁 lim 0))
164142, 52, 143idlimc 45582 . . 3 (𝜑 → 0 ∈ (𝐷 lim 0))
165 lbioo 13415 . . . . 5 ¬ 0 ∈ (0(,)(𝐵𝐴))
166165a1i 11 . . . 4 (𝜑 → ¬ 0 ∈ (0(,)(𝐵𝐴)))
167 mptresid 6071 . . . . . . 7 ( I ↾ (0(,)(𝐵𝐴))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
168127, 167eqtr4di 2793 . . . . . 6 (𝜑𝐷 = ( I ↾ (0(,)(𝐵𝐴))))
169168rneqd 5952 . . . . 5 (𝜑 → ran 𝐷 = ran ( I ↾ (0(,)(𝐵𝐴))))
170 rnresi 6095 . . . . 5 ran ( I ↾ (0(,)(𝐵𝐴))) = (0(,)(𝐵𝐴))
171169, 170eqtr2di 2792 . . . 4 (𝜑 → (0(,)(𝐵𝐴)) = ran 𝐷)
172166, 171neleqtrd 2861 . . 3 (𝜑 → ¬ 0 ∈ ran 𝐷)
173 0ne1 12335 . . . . . 6 0 ≠ 1
174173neii 2940 . . . . 5 ¬ 0 = 1
175 elsng 4645 . . . . . 6 (0 ∈ ℝ → (0 ∈ {1} ↔ 0 = 1))
1761, 175syl 17 . . . . 5 (𝜑 → (0 ∈ {1} ↔ 0 = 1))
177174, 176mtbiri 327 . . . 4 (𝜑 → ¬ 0 ∈ {1})
178129rneqd 5952 . . . . 5 (𝜑 → ran (ℝ D 𝐷) = ran (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
179 eqid 2735 . . . . . 6 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)
18024a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
181 ioon0 13410 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((0(,)(𝐵𝐴)) ≠ ∅ ↔ 0 < (𝐵𝐴)))
182180, 5, 181syl2anc 584 . . . . . . 7 (𝜑 → ((0(,)(𝐵𝐴)) ≠ ∅ ↔ 0 < (𝐵𝐴)))
1838, 182mpbird 257 . . . . . 6 (𝜑 → (0(,)(𝐵𝐴)) ≠ ∅)
184179, 183rnmptc 7227 . . . . 5 (𝜑 → ran (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = {1})
185178, 184eqtr2d 2776 . . . 4 (𝜑 → {1} = ran (ℝ D 𝐷))
186177, 185neleqtrd 2861 . . 3 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐷))
18779recnd 11287 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
188 fourierdlem61.e . . . . . 6 (𝜑𝐸 ∈ (𝐺 lim 𝐴))
189103oveq1d 7446 . . . . . 6 (𝜑 → (𝐺 lim 𝐴) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐴))
190188, 189eleqtrd 2841 . . . . 5 (𝜑𝐸 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐴))
191 simplrr 778 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐺‘(𝐴 + 𝑠)) = 𝐸) → (𝐴 + 𝑠) = 𝐴)
192153adantr 480 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐺‘(𝐴 + 𝑠)) = 𝐸) → ¬ (𝐴 + 𝑠) = 𝐴)
193191, 192condan 818 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → (𝐺‘(𝐴 + 𝑠)) = 𝐸)
194138, 187, 147, 190, 106, 193limcco 25943 . . . 4 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) lim 0))
195108div1d 12033 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) / 1) = (𝐺‘(𝐴 + 𝑠)))
19654, 121eqtrid 2787 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝑁) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
197196adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (ℝ D 𝑁) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
198197fveq1d 6909 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((ℝ D 𝑁)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠))
199 fvmpt4 45182 . . . . . . . . . 10 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐺‘(𝐴 + 𝑠)) ∈ ℝ) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠) = (𝐺‘(𝐴 + 𝑠)))
20027, 73, 199syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠) = (𝐺‘(𝐴 + 𝑠)))
201198, 200eqtr2d 2776 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) = ((ℝ D 𝑁)‘𝑠))
202129fveq1d 6909 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠))
203202adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠))
204 fvmpt4 45182 . . . . . . . . . 10 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ 1 ∈ ℝ) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠) = 1)
20527, 74, 204syl2anc 584 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠) = 1)
206203, 205eqtr2d 2776 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 1 = ((ℝ D 𝐷)‘𝑠))
207201, 206oveq12d 7449 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) / 1) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
208195, 207eqtr3d 2777 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
209208mpteq2dva 5248 . . . . 5 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))))
210209oveq1d 7446 . . . 4 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) lim 0) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
211194, 210eleqtrd 2841 . . 3 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
2121, 5, 8, 51, 53, 126, 134, 163, 164, 172, 186, 211lhop1 26068 . 2 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0))
21350fvmpt2 7027 . . . . . . 7 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ ((𝐹‘(𝐴 + 𝑠)) − 𝑌) ∈ ℝ) → (𝑁𝑠) = ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
21427, 49, 213syl2anc 584 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝑁𝑠) = ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
21552fvmpt2 7027 . . . . . . 7 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ 𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐷𝑠) = 𝑠)
21627, 27, 215syl2anc 584 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐷𝑠) = 𝑠)
217214, 216oveq12d 7449 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑁𝑠) / (𝐷𝑠)) = (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
218217mpteq2dva 5248 . . . 4 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠)))
219 fourierdlem61.h . . . 4 𝐻 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
220218, 219eqtr4di 2793 . . 3 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) = 𝐻)
221220oveq1d 7446 . 2 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0) = (𝐻 lim 0))
222212, 221eleqtrd 2841 1 (𝜑𝐸 ∈ (𝐻 lim 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wss 3963  c0 4339  {csn 4631  {cpr 4633   class class class wbr 5148  cmpt 5231   I cid 5582  dom cdm 5689  ran crn 5690  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  *cxr 11292   < clt 11293  cmin 11490   / cdiv 11918  (,)cioo 13384  TopOpenctopn 17468  topGenctg 17484  fldccnfld 21382   lim climc 25912   D cdv 25913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  fourierdlem75  46137
  Copyright terms: Public domain W3C validator