Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem61 Structured version   Visualization version   GIF version

Theorem fourierdlem61 41021
Description: Given a differentiable function 𝐹, with finite limit of the derivative at 𝐴 the derived function 𝐻 has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem61.a (𝜑𝐴 ∈ ℝ)
fourierdlem61.b (𝜑𝐵 ∈ ℝ)
fourierdlem61.altb (𝜑𝐴 < 𝐵)
fourierdlem61.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
fourierdlem61.y (𝜑𝑌 ∈ (𝐹 lim 𝐴))
fourierdlem61.g 𝐺 = (ℝ D 𝐹)
fourierdlem61.domg (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
fourierdlem61.e (𝜑𝐸 ∈ (𝐺 lim 𝐴))
fourierdlem61.h 𝐻 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
fourierdlem61.n 𝑁 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
fourierdlem61.d 𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
Assertion
Ref Expression
fourierdlem61 (𝜑𝐸 ∈ (𝐻 lim 0))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐸,𝑠   𝐹,𝑠   𝐺,𝑠   𝑁,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem61
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0red 10297 . . 3 (𝜑 → 0 ∈ ℝ)
2 fourierdlem61.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 fourierdlem61.a . . . . 5 (𝜑𝐴 ∈ ℝ)
42, 3resubcld 10712 . . . 4 (𝜑 → (𝐵𝐴) ∈ ℝ)
54rexrd 10343 . . 3 (𝜑 → (𝐵𝐴) ∈ ℝ*)
6 fourierdlem61.altb . . . 4 (𝜑𝐴 < 𝐵)
73, 2posdifd 10868 . . . 4 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
86, 7mpbid 223 . . 3 (𝜑 → 0 < (𝐵𝐴))
9 fourierdlem61.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
109adantr 472 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
113rexrd 10343 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1211adantr 472 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℝ*)
132rexrd 10343 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1413adantr 472 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐵 ∈ ℝ*)
153adantr 472 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℝ)
16 elioore 12407 . . . . . . . . 9 (𝑠 ∈ (0(,)(𝐵𝐴)) → 𝑠 ∈ ℝ)
1716adantl 473 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ ℝ)
1815, 17readdcld 10323 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ ℝ)
193recnd 10322 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2019addid1d 10490 . . . . . . . . . 10 (𝜑 → (𝐴 + 0) = 𝐴)
2120eqcomd 2771 . . . . . . . . 9 (𝜑𝐴 = (𝐴 + 0))
2221adantr 472 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 = (𝐴 + 0))
23 0red 10297 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 ∈ ℝ)
24 0xr 10340 . . . . . . . . . . 11 0 ∈ ℝ*
2524a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 ∈ ℝ*)
265adantr 472 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐵𝐴) ∈ ℝ*)
27 simpr 477 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ (0(,)(𝐵𝐴)))
28 ioogtlb 40359 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (𝐵𝐴) ∈ ℝ*𝑠 ∈ (0(,)(𝐵𝐴))) → 0 < 𝑠)
2925, 26, 27, 28syl3anc 1490 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 0 < 𝑠)
3023, 17, 15, 29ltadd2dd 10450 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 0) < (𝐴 + 𝑠))
3122, 30eqbrtrd 4831 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 < (𝐴 + 𝑠))
324adantr 472 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐵𝐴) ∈ ℝ)
33 iooltub 40375 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (𝐵𝐴) ∈ ℝ*𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 < (𝐵𝐴))
3425, 26, 27, 33syl3anc 1490 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 < (𝐵𝐴))
3517, 32, 15, 34ltadd2dd 10450 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) < (𝐴 + (𝐵𝐴)))
362recnd 10322 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
3719, 36pncan3d 10649 . . . . . . . . 9 (𝜑 → (𝐴 + (𝐵𝐴)) = 𝐵)
3837adantr 472 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + (𝐵𝐴)) = 𝐵)
3935, 38breqtrd 4835 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) < 𝐵)
4012, 14, 18, 31, 39eliood 40362 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ (𝐴(,)𝐵))
4110, 40ffvelrnd 6550 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐹‘(𝐴 + 𝑠)) ∈ ℝ)
42 ioossre 12437 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ℝ
4342a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
44 ax-resscn 10246 . . . . . . . 8 ℝ ⊆ ℂ
4543, 44syl6ss 3773 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
46 eqid 2765 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4746, 13, 3, 6lptioo1cn 40516 . . . . . . 7 (𝜑𝐴 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
48 fourierdlem61.y . . . . . . 7 (𝜑𝑌 ∈ (𝐹 lim 𝐴))
499, 45, 47, 48limcrecl 40499 . . . . . 6 (𝜑𝑌 ∈ ℝ)
5049adantr 472 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑌 ∈ ℝ)
5141, 50resubcld 10712 . . . 4 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐹‘(𝐴 + 𝑠)) − 𝑌) ∈ ℝ)
52 fourierdlem61.n . . . 4 𝑁 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
5351, 52fmptd 6574 . . 3 (𝜑𝑁:(0(,)(𝐵𝐴))⟶ℝ)
54 fourierdlem61.d . . . 4 𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
5517, 54fmptd 6574 . . 3 (𝜑𝐷:(0(,)(𝐵𝐴))⟶ℝ)
5652oveq2i 6853 . . . . . 6 (ℝ D 𝑁) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)))
5756a1i 11 . . . . 5 (𝜑 → (ℝ D 𝑁) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))))
5857dmeqd 5494 . . . 4 (𝜑 → dom (ℝ D 𝑁) = dom (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))))
59 reelprrecn 10281 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
6059a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
6141recnd 10322 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐹‘(𝐴 + 𝑠)) ∈ ℂ)
62 dvfre 24005 . . . . . . . . . . 11 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
639, 43, 62syl2anc 579 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
64 fourierdlem61.g . . . . . . . . . . . 12 𝐺 = (ℝ D 𝐹)
6564a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (ℝ D 𝐹))
6665feq1d 6208 . . . . . . . . . 10 (𝜑 → (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ))
6763, 66mpbird 248 . . . . . . . . 9 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
6867adantr 472 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
6965eqcomd 2771 . . . . . . . . . . . 12 (𝜑 → (ℝ D 𝐹) = 𝐺)
7069dmeqd 5494 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) = dom 𝐺)
71 fourierdlem61.domg . . . . . . . . . . 11 (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
7270, 71eqtr2d 2800 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7372adantr 472 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7440, 73eleqtrd 2846 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ∈ dom (ℝ D 𝐹))
7568, 74ffvelrnd 6550 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) ∈ ℝ)
76 1red 10294 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 1 ∈ ℝ)
779ffvelrnda 6549 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
7877recnd 10322 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
7972feq2d 6209 . . . . . . . . . . 11 (𝜑 → (𝐺:(𝐴(,)𝐵)⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
8067, 79mpbird 248 . . . . . . . . . 10 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
8180ffvelrnda 6549 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℝ)
8219adantr 472 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝐴 ∈ ℂ)
8319adantr 472 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝐴 ∈ ℂ)
84 0red 10297 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
8560, 19dvmptc 24012 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝐴)) = (𝑠 ∈ ℝ ↦ 0))
86 ioossre 12437 . . . . . . . . . . . . 13 (0(,)(𝐵𝐴)) ⊆ ℝ
8786a1i 11 . . . . . . . . . . . 12 (𝜑 → (0(,)(𝐵𝐴)) ⊆ ℝ)
8846tgioo2 22885 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
89 iooretop 22848 . . . . . . . . . . . . 13 (0(,)(𝐵𝐴)) ∈ (topGen‘ran (,))
9089a1i 11 . . . . . . . . . . . 12 (𝜑 → (0(,)(𝐵𝐴)) ∈ (topGen‘ran (,)))
9160, 83, 84, 85, 87, 88, 46, 90dvmptres 24017 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 0))
9217recnd 10322 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑠 ∈ ℂ)
93 recn 10279 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
9493adantl 473 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
95 1red 10294 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
9660dvmptid 24011 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
9760, 94, 95, 96, 87, 88, 46, 90dvmptres 24017 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
9860, 82, 23, 91, 92, 76, 97dvmptadd 24014 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (0 + 1)))
99 0p1e1 11401 . . . . . . . . . . 11 (0 + 1) = 1
10099mpteq2i 4900 . . . . . . . . . 10 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (0 + 1)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)
10198, 100syl6eq 2815 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
1029feqmptd 6438 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
103102eqcomd 2771 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
104103oveq2d 6858 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
10580feqmptd 6438 . . . . . . . . . 10 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
106104, 69, 1053eqtrd 2803 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
107 fveq2 6375 . . . . . . . . 9 (𝑥 = (𝐴 + 𝑠) → (𝐹𝑥) = (𝐹‘(𝐴 + 𝑠)))
108 fveq2 6375 . . . . . . . . 9 (𝑥 = (𝐴 + 𝑠) → (𝐺𝑥) = (𝐺‘(𝐴 + 𝑠)))
10960, 60, 40, 76, 78, 81, 101, 106, 107, 108dvmptco 24026 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) · 1)))
11075recnd 10322 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) ∈ ℂ)
111110mulid1d 10311 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) · 1) = (𝐺‘(𝐴 + 𝑠)))
112111mpteq2dva 4903 . . . . . . . 8 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) · 1)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
113109, 112eqtrd 2799 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
114 limccl 23930 . . . . . . . . 9 (𝐹 lim 𝐴) ⊆ ℂ
115114, 48sseldi 3759 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
116115adantr 472 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 𝑌 ∈ ℂ)
117115adantr 472 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑌 ∈ ℂ)
11860, 115dvmptc 24012 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑌)) = (𝑠 ∈ ℝ ↦ 0))
11960, 117, 84, 118, 87, 88, 46, 90dvmptres 24017 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 0))
12060, 61, 75, 113, 116, 25, 119dvmptsub 24021 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) − 0)))
121110subid1d 10635 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) − 0) = (𝐺‘(𝐴 + 𝑠)))
122121mpteq2dva 4903 . . . . . 6 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐺‘(𝐴 + 𝑠)) − 0)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
123120, 122eqtrd 2799 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
124123dmeqd 5494 . . . 4 (𝜑 → dom (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))) = dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
12575ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑠 ∈ (0(,)(𝐵𝐴))(𝐺‘(𝐴 + 𝑠)) ∈ ℝ)
126 dmmptg 5818 . . . . 5 (∀𝑠 ∈ (0(,)(𝐵𝐴))(𝐺‘(𝐴 + 𝑠)) ∈ ℝ → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (0(,)(𝐵𝐴)))
127125, 126syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (0(,)(𝐵𝐴)))
12858, 124, 1273eqtrd 2803 . . 3 (𝜑 → dom (ℝ D 𝑁) = (0(,)(𝐵𝐴)))
12954a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠))
130129oveq2d 6858 . . . . . 6 (𝜑 → (ℝ D 𝐷) = (ℝ D (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)))
131130, 97eqtrd 2799 . . . . 5 (𝜑 → (ℝ D 𝐷) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
132131dmeqd 5494 . . . 4 (𝜑 → dom (ℝ D 𝐷) = dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
13376ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑠 ∈ (0(,)(𝐵𝐴))1 ∈ ℝ)
134 dmmptg 5818 . . . . 5 (∀𝑠 ∈ (0(,)(𝐵𝐴))1 ∈ ℝ → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (0(,)(𝐵𝐴)))
135133, 134syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (0(,)(𝐵𝐴)))
136132, 135eqtrd 2799 . . 3 (𝜑 → dom (ℝ D 𝐷) = (0(,)(𝐵𝐴)))
137 eqid 2765 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠)))
138 eqid 2765 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌)
139 eqid 2765 . . . . 5 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
14040adantrr 708 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) ≠ 𝐴)) → (𝐴 + 𝑠) ∈ (𝐴(,)𝐵))
141 eqid 2765 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴)
142 eqid 2765 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠)
143 eqid 2765 . . . . . . . 8 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠))
14487, 44syl6ss 3773 . . . . . . . . 9 (𝜑 → (0(,)(𝐵𝐴)) ⊆ ℂ)
1451recnd 10322 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
146141, 144, 19, 145constlimc 40494 . . . . . . . 8 (𝜑𝐴 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝐴) lim 0))
147144, 142, 145idlimc 40496 . . . . . . . 8 (𝜑 → 0 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠) lim 0))
148141, 142, 143, 82, 92, 146, 147addlimc 40518 . . . . . . 7 (𝜑 → (𝐴 + 0) ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) lim 0))
14921, 148eqeltrd 2844 . . . . . 6 (𝜑𝐴 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐴 + 𝑠)) lim 0))
150102oveq1d 6857 . . . . . . 7 (𝜑 → (𝐹 lim 𝐴) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐴))
15148, 150eleqtrd 2846 . . . . . 6 (𝜑𝑌 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐴))
152 simplrr 796 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐹‘(𝐴 + 𝑠)) = 𝑌) → (𝐴 + 𝑠) = 𝐴)
15315, 31gtned 10426 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐴 + 𝑠) ≠ 𝐴)
154153neneqd 2942 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ¬ (𝐴 + 𝑠) = 𝐴)
155154adantrr 708 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → ¬ (𝐴 + 𝑠) = 𝐴)
156155adantr 472 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐹‘(𝐴 + 𝑠)) = 𝑌) → ¬ (𝐴 + 𝑠) = 𝐴)
157152, 156condan 852 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → (𝐹‘(𝐴 + 𝑠)) = 𝑌)
158140, 78, 149, 151, 107, 157limcco 23948 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐹‘(𝐴 + 𝑠))) lim 0))
159138, 144, 115, 145constlimc 40494 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑌) lim 0))
160137, 138, 139, 61, 116, 158, 159sublimc 40522 . . . 4 (𝜑 → (𝑌𝑌) ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0))
161115subidd 10634 . . . 4 (𝜑 → (𝑌𝑌) = 0)
16252eqcomi 2774 . . . . . 6 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) = 𝑁
163162oveq1i 6852 . . . . 5 ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0)
164163a1i 11 . . . 4 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝐹‘(𝐴 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0))
165160, 161, 1643eltr3d 2858 . . 3 (𝜑 → 0 ∈ (𝑁 lim 0))
166144, 54, 145idlimc 40496 . . 3 (𝜑 → 0 ∈ (𝐷 lim 0))
167 lbioo 12408 . . . . 5 ¬ 0 ∈ (0(,)(𝐵𝐴))
168167a1i 11 . . . 4 (𝜑 → ¬ 0 ∈ (0(,)(𝐵𝐴)))
169 mptresid 5640 . . . . . . 7 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 𝑠) = ( I ↾ (0(,)(𝐵𝐴)))
170129, 169syl6eq 2815 . . . . . 6 (𝜑𝐷 = ( I ↾ (0(,)(𝐵𝐴))))
171170rneqd 5521 . . . . 5 (𝜑 → ran 𝐷 = ran ( I ↾ (0(,)(𝐵𝐴))))
172 rnresi 5661 . . . . 5 ran ( I ↾ (0(,)(𝐵𝐴))) = (0(,)(𝐵𝐴))
173171, 172syl6req 2816 . . . 4 (𝜑 → (0(,)(𝐵𝐴)) = ran 𝐷)
174168, 173neleqtrd 2865 . . 3 (𝜑 → ¬ 0 ∈ ran 𝐷)
175 0ne1 11343 . . . . . 6 0 ≠ 1
176175neii 2939 . . . . 5 ¬ 0 = 1
177 elsng 4348 . . . . . 6 (0 ∈ ℝ → (0 ∈ {1} ↔ 0 = 1))
1781, 177syl 17 . . . . 5 (𝜑 → (0 ∈ {1} ↔ 0 = 1))
179176, 178mtbiri 318 . . . 4 (𝜑 → ¬ 0 ∈ {1})
180131rneqd 5521 . . . . 5 (𝜑 → ran (ℝ D 𝐷) = ran (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1))
181 eqid 2765 . . . . . 6 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)
18224a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
183 ioon0 12403 . . . . . . . 8 ((0 ∈ ℝ* ∧ (𝐵𝐴) ∈ ℝ*) → ((0(,)(𝐵𝐴)) ≠ ∅ ↔ 0 < (𝐵𝐴)))
184182, 5, 183syl2anc 579 . . . . . . 7 (𝜑 → ((0(,)(𝐵𝐴)) ≠ ∅ ↔ 0 < (𝐵𝐴)))
1858, 184mpbird 248 . . . . . 6 (𝜑 → (0(,)(𝐵𝐴)) ≠ ∅)
186181, 76, 185rnmptc 40000 . . . . 5 (𝜑 → ran (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1) = {1})
187180, 186eqtr2d 2800 . . . 4 (𝜑 → {1} = ran (ℝ D 𝐷))
188179, 187neleqtrd 2865 . . 3 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐷))
18981recnd 10322 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
190 fourierdlem61.e . . . . . 6 (𝜑𝐸 ∈ (𝐺 lim 𝐴))
191105oveq1d 6857 . . . . . 6 (𝜑 → (𝐺 lim 𝐴) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐴))
192190, 191eleqtrd 2846 . . . . 5 (𝜑𝐸 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐴))
193 simplrr 796 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐺‘(𝐴 + 𝑠)) = 𝐸) → (𝐴 + 𝑠) = 𝐴)
194155adantr 472 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) ∧ ¬ (𝐺‘(𝐴 + 𝑠)) = 𝐸) → ¬ (𝐴 + 𝑠) = 𝐴)
195193, 194condan 852 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐴 + 𝑠) = 𝐴)) → (𝐺‘(𝐴 + 𝑠)) = 𝐸)
196140, 189, 149, 192, 108, 195limcco 23948 . . . 4 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) lim 0))
197110div1d 11047 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) / 1) = (𝐺‘(𝐴 + 𝑠)))
19856, 123syl5eq 2811 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝑁) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
199198adantr 472 . . . . . . . . . 10 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (ℝ D 𝑁) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))))
200199fveq1d 6377 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((ℝ D 𝑁)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠))
201 eqid 2765 . . . . . . . . . . 11 (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))
202201fvmpt2 6480 . . . . . . . . . 10 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ (𝐺‘(𝐴 + 𝑠)) ∈ ℝ) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠) = (𝐺‘(𝐴 + 𝑠)))
20327, 75, 202syl2anc 579 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠)))‘𝑠) = (𝐺‘(𝐴 + 𝑠)))
204200, 203eqtr2d 2800 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) = ((ℝ D 𝑁)‘𝑠))
205131fveq1d 6377 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠))
206205adantr 472 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠))
207181fvmpt2 6480 . . . . . . . . . 10 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ 1 ∈ ℝ) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠) = 1)
20827, 76, 207syl2anc 579 . . . . . . . . 9 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ 1)‘𝑠) = 1)
209206, 208eqtr2d 2800 . . . . . . . 8 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → 1 = ((ℝ D 𝐷)‘𝑠))
210204, 209oveq12d 6860 . . . . . . 7 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝐺‘(𝐴 + 𝑠)) / 1) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
211197, 210eqtr3d 2801 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐺‘(𝐴 + 𝑠)) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
212211mpteq2dva 4903 . . . . 5 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))))
213212oveq1d 6857 . . . 4 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (𝐺‘(𝐴 + 𝑠))) lim 0) = ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
214196, 213eleqtrd 2846 . . 3 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
2151, 5, 8, 53, 55, 128, 136, 165, 166, 174, 188, 214lhop1 24068 . 2 (𝜑𝐸 ∈ ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0))
21652fvmpt2 6480 . . . . . . 7 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ ((𝐹‘(𝐴 + 𝑠)) − 𝑌) ∈ ℝ) → (𝑁𝑠) = ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
21727, 51, 216syl2anc 579 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝑁𝑠) = ((𝐹‘(𝐴 + 𝑠)) − 𝑌))
21854fvmpt2 6480 . . . . . . 7 ((𝑠 ∈ (0(,)(𝐵𝐴)) ∧ 𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐷𝑠) = 𝑠)
21927, 27, 218syl2anc 579 . . . . . 6 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → (𝐷𝑠) = 𝑠)
220217, 219oveq12d 6860 . . . . 5 ((𝜑𝑠 ∈ (0(,)(𝐵𝐴))) → ((𝑁𝑠) / (𝐷𝑠)) = (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
221220mpteq2dva 4903 . . . 4 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠)))
222 fourierdlem61.h . . . 4 𝐻 = (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ (((𝐹‘(𝐴 + 𝑠)) − 𝑌) / 𝑠))
223221, 222syl6eqr 2817 . . 3 (𝜑 → (𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) = 𝐻)
224223oveq1d 6857 . 2 (𝜑 → ((𝑠 ∈ (0(,)(𝐵𝐴)) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0) = (𝐻 lim 0))
225215, 224eleqtrd 2846 1 (𝜑𝐸 ∈ (𝐻 lim 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wral 3055  wss 3732  c0 4079  {csn 4334  {cpr 4336   class class class wbr 4809  cmpt 4888   I cid 5184  dom cdm 5277  ran crn 5278  cres 5279  wf 6064  cfv 6068  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190   + caddc 10192   · cmul 10194  *cxr 10327   < clt 10328  cmin 10520   / cdiv 10938  (,)cioo 12377  TopOpenctopn 16348  topGenctg 16364  fldccnfld 20019   lim climc 23917   D cdv 23918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ioc 12382  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14124  df-re 14125  df-im 14126  df-sqrt 14260  df-abs 14261  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-starv 16229  df-sca 16230  df-vsca 16231  df-ip 16232  df-tset 16233  df-ple 16234  df-ds 16236  df-unif 16237  df-hom 16238  df-cco 16239  df-rest 16349  df-topn 16350  df-0g 16368  df-gsum 16369  df-topgen 16370  df-pt 16371  df-prds 16374  df-xrs 16428  df-qtop 16433  df-imas 16434  df-xps 16436  df-mre 16512  df-mrc 16513  df-acs 16515  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-mulg 17808  df-cntz 18013  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-lp 21220  df-perf 21221  df-cn 21311  df-cnp 21312  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-limc 23921  df-dv 23922
This theorem is referenced by:  fourierdlem75  41035
  Copyright terms: Public domain W3C validator