Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem60 Structured version   Visualization version   GIF version

Theorem fourierdlem60 43597
Description: Given a differentiable function 𝐹, with finite limit of the derivative at 𝐴 the derived function 𝐻 has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem60.a (𝜑𝐴 ∈ ℝ)
fourierdlem60.b (𝜑𝐵 ∈ ℝ)
fourierdlem60.altb (𝜑𝐴 < 𝐵)
fourierdlem60.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
fourierdlem60.y (𝜑𝑌 ∈ (𝐹 lim 𝐵))
fourierdlem60.g 𝐺 = (ℝ D 𝐹)
fourierdlem60.domg (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
fourierdlem60.e (𝜑𝐸 ∈ (𝐺 lim 𝐵))
fourierdlem60.h 𝐻 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
fourierdlem60.n 𝑁 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
fourierdlem60.d 𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
Assertion
Ref Expression
fourierdlem60 (𝜑𝐸 ∈ (𝐻 lim 0))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐸,𝑠   𝐹,𝑠   𝐺,𝑠   𝑁,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem60
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem60.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem60.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2resubcld 11333 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℝ)
43rexrd 10956 . . 3 (𝜑 → (𝐴𝐵) ∈ ℝ*)
5 0red 10909 . . 3 (𝜑 → 0 ∈ ℝ)
6 fourierdlem60.altb . . . 4 (𝜑𝐴 < 𝐵)
71, 2sublt0d 11531 . . . 4 (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
86, 7mpbird 256 . . 3 (𝜑 → (𝐴𝐵) < 0)
9 fourierdlem60.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
109adantr 480 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
111rexrd 10956 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1211adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 ∈ ℝ*)
132rexrd 10956 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1413adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℝ*)
152adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℝ)
16 elioore 13038 . . . . . . . . 9 (𝑠 ∈ ((𝐴𝐵)(,)0) → 𝑠 ∈ ℝ)
1716adantl 481 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ℝ)
1815, 17readdcld 10935 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ ℝ)
192recnd 10934 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
201recnd 10934 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2119, 20pncan3d 11265 . . . . . . . . . 10 (𝜑 → (𝐵 + (𝐴𝐵)) = 𝐴)
2221eqcomd 2744 . . . . . . . . 9 (𝜑𝐴 = (𝐵 + (𝐴𝐵)))
2322adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 = (𝐵 + (𝐴𝐵)))
243adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) ∈ ℝ)
254adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) ∈ ℝ*)
26 0xr 10953 . . . . . . . . . . 11 0 ∈ ℝ*
2726a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 0 ∈ ℝ*)
28 simpr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ((𝐴𝐵)(,)0))
2925, 27, 28ioogtlbd 42978 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) < 𝑠)
3024, 17, 15, 29ltadd2dd 11064 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + (𝐴𝐵)) < (𝐵 + 𝑠))
3123, 30eqbrtrd 5092 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 < (𝐵 + 𝑠))
32 0red 10909 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 0 ∈ ℝ)
3325, 27, 28iooltubd 42972 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 < 0)
3417, 32, 15, 33ltadd2dd 11064 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) < (𝐵 + 0))
3519addid1d 11105 . . . . . . . . 9 (𝜑 → (𝐵 + 0) = 𝐵)
3635adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 0) = 𝐵)
3734, 36breqtrd 5096 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) < 𝐵)
3812, 14, 18, 31, 37eliood 42926 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ (𝐴(,)𝐵))
3910, 38ffvelrnd 6944 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐹‘(𝐵 + 𝑠)) ∈ ℝ)
40 ioossre 13069 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ℝ
4140a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
42 ax-resscn 10859 . . . . . . . 8 ℝ ⊆ ℂ
4341, 42sstrdi 3929 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
44 eqid 2738 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544, 11, 2, 6lptioo2cn 43076 . . . . . . 7 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
46 fourierdlem60.y . . . . . . 7 (𝜑𝑌 ∈ (𝐹 lim 𝐵))
479, 43, 45, 46limcrecl 43060 . . . . . 6 (𝜑𝑌 ∈ ℝ)
4847adantr 480 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑌 ∈ ℝ)
4939, 48resubcld 11333 . . . 4 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐹‘(𝐵 + 𝑠)) − 𝑌) ∈ ℝ)
50 fourierdlem60.n . . . 4 𝑁 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
5149, 50fmptd 6970 . . 3 (𝜑𝑁:((𝐴𝐵)(,)0)⟶ℝ)
52 fourierdlem60.d . . . 4 𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
5317, 52fmptd 6970 . . 3 (𝜑𝐷:((𝐴𝐵)(,)0)⟶ℝ)
5450oveq2i 7266 . . . . . 6 (ℝ D 𝑁) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)))
5554a1i 11 . . . . 5 (𝜑 → (ℝ D 𝑁) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))))
5655dmeqd 5803 . . . 4 (𝜑 → dom (ℝ D 𝑁) = dom (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))))
57 reelprrecn 10894 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
5857a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
5939recnd 10934 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐹‘(𝐵 + 𝑠)) ∈ ℂ)
60 dvfre 25020 . . . . . . . . . . 11 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
619, 41, 60syl2anc 583 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
62 fourierdlem60.g . . . . . . . . . . . 12 𝐺 = (ℝ D 𝐹)
6362a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (ℝ D 𝐹))
6463feq1d 6569 . . . . . . . . . 10 (𝜑 → (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ))
6561, 64mpbird 256 . . . . . . . . 9 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
6665adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
6763eqcomd 2744 . . . . . . . . . . . 12 (𝜑 → (ℝ D 𝐹) = 𝐺)
6867dmeqd 5803 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) = dom 𝐺)
69 fourierdlem60.domg . . . . . . . . . . 11 (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
7068, 69eqtr2d 2779 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7170adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7238, 71eleqtrd 2841 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ dom (ℝ D 𝐹))
7366, 72ffvelrnd 6944 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) ∈ ℝ)
74 1red 10907 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 1 ∈ ℝ)
759ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
7675recnd 10934 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
7770feq2d 6570 . . . . . . . . . . 11 (𝜑 → (𝐺:(𝐴(,)𝐵)⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
7865, 77mpbird 256 . . . . . . . . . 10 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
7978ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℝ)
8019adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℂ)
8119adantr 480 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝐵 ∈ ℂ)
82 0red 10909 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
8358, 19dvmptc 25027 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝐵)) = (𝑠 ∈ ℝ ↦ 0))
84 ioossre 13069 . . . . . . . . . . . . 13 ((𝐴𝐵)(,)0) ⊆ ℝ
8584a1i 11 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐵)(,)0) ⊆ ℝ)
86 tgioo4 43001 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
87 iooretop 23835 . . . . . . . . . . . . 13 ((𝐴𝐵)(,)0) ∈ (topGen‘ran (,))
8887a1i 11 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐵)(,)0) ∈ (topGen‘ran (,)))
8958, 81, 82, 83, 85, 86, 44, 88dvmptres 25032 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 0))
9017recnd 10934 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ℂ)
91 recn 10892 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
9291adantl 481 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
93 1red 10907 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
9458dvmptid 25026 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
9558, 92, 93, 94, 85, 86, 44, 88dvmptres 25032 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
9658, 80, 32, 89, 90, 74, 95dvmptadd 25029 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (0 + 1)))
97 0p1e1 12025 . . . . . . . . . . 11 (0 + 1) = 1
9897mpteq2i 5175 . . . . . . . . . 10 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (0 + 1)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)
9996, 98eqtrdi 2795 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
1009feqmptd 6819 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
101100eqcomd 2744 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
102101oveq2d 7271 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
10378feqmptd 6819 . . . . . . . . . 10 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
104102, 67, 1033eqtrd 2782 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
105 fveq2 6756 . . . . . . . . 9 (𝑥 = (𝐵 + 𝑠) → (𝐹𝑥) = (𝐹‘(𝐵 + 𝑠)))
106 fveq2 6756 . . . . . . . . 9 (𝑥 = (𝐵 + 𝑠) → (𝐺𝑥) = (𝐺‘(𝐵 + 𝑠)))
10758, 58, 38, 74, 76, 79, 99, 104, 105, 106dvmptco 25041 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) · 1)))
10873recnd 10934 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) ∈ ℂ)
109108mulid1d 10923 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) · 1) = (𝐺‘(𝐵 + 𝑠)))
110109mpteq2dva 5170 . . . . . . . 8 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) · 1)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
111107, 110eqtrd 2778 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
112 limccl 24944 . . . . . . . . 9 (𝐹 lim 𝐵) ⊆ ℂ
113112, 46sselid 3915 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
114113adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑌 ∈ ℂ)
115113adantr 480 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑌 ∈ ℂ)
11658, 113dvmptc 25027 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑌)) = (𝑠 ∈ ℝ ↦ 0))
11758, 115, 82, 116, 85, 86, 44, 88dvmptres 25032 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 0))
11858, 59, 73, 111, 114, 27, 117dvmptsub 25036 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) − 0)))
119108subid1d 11251 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) − 0) = (𝐺‘(𝐵 + 𝑠)))
120119mpteq2dva 5170 . . . . . 6 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) − 0)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
121118, 120eqtrd 2778 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
122121dmeqd 5803 . . . 4 (𝜑 → dom (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
12373ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑠 ∈ ((𝐴𝐵)(,)0)(𝐺‘(𝐵 + 𝑠)) ∈ ℝ)
124 dmmptg 6134 . . . . 5 (∀𝑠 ∈ ((𝐴𝐵)(,)0)(𝐺‘(𝐵 + 𝑠)) ∈ ℝ → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = ((𝐴𝐵)(,)0))
125123, 124syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = ((𝐴𝐵)(,)0))
12656, 122, 1253eqtrd 2782 . . 3 (𝜑 → dom (ℝ D 𝑁) = ((𝐴𝐵)(,)0))
12752a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠))
128127oveq2d 7271 . . . . . 6 (𝜑 → (ℝ D 𝐷) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)))
129128, 95eqtrd 2778 . . . . 5 (𝜑 → (ℝ D 𝐷) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
130129dmeqd 5803 . . . 4 (𝜑 → dom (ℝ D 𝐷) = dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
13174ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑠 ∈ ((𝐴𝐵)(,)0)1 ∈ ℝ)
132 dmmptg 6134 . . . . 5 (∀𝑠 ∈ ((𝐴𝐵)(,)0)1 ∈ ℝ → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = ((𝐴𝐵)(,)0))
133131, 132syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = ((𝐴𝐵)(,)0))
134130, 133eqtrd 2778 . . 3 (𝜑 → dom (ℝ D 𝐷) = ((𝐴𝐵)(,)0))
135 eqid 2738 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))
136 eqid 2738 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌)
137 eqid 2738 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
13838adantrr 713 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) ≠ 𝐵)) → (𝐵 + 𝑠) ∈ (𝐴(,)𝐵))
139 eqid 2738 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵)
140 eqid 2738 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
141 eqid 2738 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))
14285, 42sstrdi 3929 . . . . . . . . 9 (𝜑 → ((𝐴𝐵)(,)0) ⊆ ℂ)
1435recnd 10934 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
144139, 142, 19, 143constlimc 43055 . . . . . . . 8 (𝜑𝐵 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵) lim 0))
145142, 140, 143idlimc 43057 . . . . . . . 8 (𝜑 → 0 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠) lim 0))
146139, 140, 141, 80, 90, 144, 145addlimc 43079 . . . . . . 7 (𝜑 → (𝐵 + 0) ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) lim 0))
14735, 146eqeltrrd 2840 . . . . . 6 (𝜑𝐵 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) lim 0))
148100oveq1d 7270 . . . . . . 7 (𝜑 → (𝐹 lim 𝐵) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐵))
14946, 148eleqtrd 2841 . . . . . 6 (𝜑𝑌 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐵))
150 simplrr 774 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐹‘(𝐵 + 𝑠)) = 𝑌) → (𝐵 + 𝑠) = 𝐵)
15118, 37ltned 11041 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ≠ 𝐵)
152151neneqd 2947 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ¬ (𝐵 + 𝑠) = 𝐵)
153152adantrr 713 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → ¬ (𝐵 + 𝑠) = 𝐵)
154153adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐹‘(𝐵 + 𝑠)) = 𝑌) → ¬ (𝐵 + 𝑠) = 𝐵)
155150, 154condan 814 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → (𝐹‘(𝐵 + 𝑠)) = 𝑌)
156138, 76, 147, 149, 105, 155limcco 24962 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠))) lim 0))
157136, 142, 113, 143constlimc 43055 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌) lim 0))
158135, 136, 137, 59, 114, 156, 157sublimc 43083 . . . 4 (𝜑 → (𝑌𝑌) ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0))
159113subidd 11250 . . . 4 (𝜑 → (𝑌𝑌) = 0)
16050eqcomi 2747 . . . . . 6 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) = 𝑁
161160oveq1i 7265 . . . . 5 ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0)
162161a1i 11 . . . 4 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0))
163158, 159, 1623eltr3d 2853 . . 3 (𝜑 → 0 ∈ (𝑁 lim 0))
164142, 52, 143idlimc 43057 . . 3 (𝜑 → 0 ∈ (𝐷 lim 0))
165 ubioo 13040 . . . . 5 ¬ 0 ∈ ((𝐴𝐵)(,)0)
166165a1i 11 . . . 4 (𝜑 → ¬ 0 ∈ ((𝐴𝐵)(,)0))
167 mptresid 5947 . . . . . . 7 ( I ↾ ((𝐴𝐵)(,)0)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
168127, 167eqtr4di 2797 . . . . . 6 (𝜑𝐷 = ( I ↾ ((𝐴𝐵)(,)0)))
169168rneqd 5836 . . . . 5 (𝜑 → ran 𝐷 = ran ( I ↾ ((𝐴𝐵)(,)0)))
170 rnresi 5972 . . . . 5 ran ( I ↾ ((𝐴𝐵)(,)0)) = ((𝐴𝐵)(,)0)
171169, 170eqtr2di 2796 . . . 4 (𝜑 → ((𝐴𝐵)(,)0) = ran 𝐷)
172166, 171neleqtrd 2860 . . 3 (𝜑 → ¬ 0 ∈ ran 𝐷)
173 0ne1 11974 . . . . . 6 0 ≠ 1
174173neii 2944 . . . . 5 ¬ 0 = 1
175 elsng 4572 . . . . . 6 (0 ∈ ℝ → (0 ∈ {1} ↔ 0 = 1))
1765, 175syl 17 . . . . 5 (𝜑 → (0 ∈ {1} ↔ 0 = 1))
177174, 176mtbiri 326 . . . 4 (𝜑 → ¬ 0 ∈ {1})
178129rneqd 5836 . . . . 5 (𝜑 → ran (ℝ D 𝐷) = ran (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
179 eqid 2738 . . . . . 6 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)
18026a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
181 ioon0 13034 . . . . . . . 8 (((𝐴𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → (((𝐴𝐵)(,)0) ≠ ∅ ↔ (𝐴𝐵) < 0))
1824, 180, 181syl2anc 583 . . . . . . 7 (𝜑 → (((𝐴𝐵)(,)0) ≠ ∅ ↔ (𝐴𝐵) < 0))
1838, 182mpbird 256 . . . . . 6 (𝜑 → ((𝐴𝐵)(,)0) ≠ ∅)
184179, 183rnmptc 7064 . . . . 5 (𝜑 → ran (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = {1})
185178, 184eqtr2d 2779 . . . 4 (𝜑 → {1} = ran (ℝ D 𝐷))
186177, 185neleqtrd 2860 . . 3 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐷))
18779recnd 10934 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
188 fourierdlem60.e . . . . . 6 (𝜑𝐸 ∈ (𝐺 lim 𝐵))
189103oveq1d 7270 . . . . . 6 (𝜑 → (𝐺 lim 𝐵) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐵))
190188, 189eleqtrd 2841 . . . . 5 (𝜑𝐸 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐵))
191 simplrr 774 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐺‘(𝐵 + 𝑠)) = 𝐸) → (𝐵 + 𝑠) = 𝐵)
192153adantr 480 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐺‘(𝐵 + 𝑠)) = 𝐸) → ¬ (𝐵 + 𝑠) = 𝐵)
193191, 192condan 814 . . . . 5 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → (𝐺‘(𝐵 + 𝑠)) = 𝐸)
194138, 187, 147, 190, 106, 193limcco 24962 . . . 4 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) lim 0))
195108div1d 11673 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) / 1) = (𝐺‘(𝐵 + 𝑠)))
19654, 121syl5eq 2791 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝑁) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
197196adantr 480 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (ℝ D 𝑁) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
198197fveq1d 6758 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((ℝ D 𝑁)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠))
199 fvmpt4 42671 . . . . . . . . . 10 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐺‘(𝐵 + 𝑠)) ∈ ℝ) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠) = (𝐺‘(𝐵 + 𝑠)))
20028, 73, 199syl2anc 583 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠) = (𝐺‘(𝐵 + 𝑠)))
201198, 200eqtr2d 2779 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) = ((ℝ D 𝑁)‘𝑠))
202129fveq1d 6758 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠))
203202adantr 480 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠))
204 fvmpt4 42671 . . . . . . . . . 10 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ 1 ∈ ℝ) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠) = 1)
20528, 74, 204syl2anc 583 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠) = 1)
206203, 205eqtr2d 2779 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 1 = ((ℝ D 𝐷)‘𝑠))
207201, 206oveq12d 7273 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) / 1) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
208195, 207eqtr3d 2780 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
209208mpteq2dva 5170 . . . . 5 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))))
210209oveq1d 7270 . . . 4 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) lim 0) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
211194, 210eleqtrd 2841 . . 3 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
2124, 5, 8, 51, 53, 126, 134, 163, 164, 172, 186, 211lhop2 25084 . 2 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0))
21350fvmpt2 6868 . . . . . . 7 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ ((𝐹‘(𝐵 + 𝑠)) − 𝑌) ∈ ℝ) → (𝑁𝑠) = ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
21428, 49, 213syl2anc 583 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝑁𝑠) = ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
21552fvmpt2 6868 . . . . . . 7 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ 𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐷𝑠) = 𝑠)
21628, 28, 215syl2anc 583 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐷𝑠) = 𝑠)
217214, 216oveq12d 7273 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑁𝑠) / (𝐷𝑠)) = (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
218217mpteq2dva 5170 . . . 4 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠)))
219 fourierdlem60.h . . . 4 𝐻 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
220218, 219eqtr4di 2797 . . 3 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) = 𝐻)
221220oveq1d 7270 . 2 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0) = (𝐻 lim 0))
222212, 221eleqtrd 2841 1 (𝜑𝐸 ∈ (𝐻 lim 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  c0 4253  {csn 4558  {cpr 4560   class class class wbr 5070  cmpt 5153   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cmin 11135   / cdiv 11562  (,)cioo 13008  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510   lim climc 24931   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  fourierdlem74  43611
  Copyright terms: Public domain W3C validator