Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem60 Structured version   Visualization version   GIF version

Theorem fourierdlem60 43382
Description: Given a differentiable function 𝐹, with finite limit of the derivative at 𝐴 the derived function 𝐻 has a limit at 0. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem60.a (𝜑𝐴 ∈ ℝ)
fourierdlem60.b (𝜑𝐵 ∈ ℝ)
fourierdlem60.altb (𝜑𝐴 < 𝐵)
fourierdlem60.f (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
fourierdlem60.y (𝜑𝑌 ∈ (𝐹 lim 𝐵))
fourierdlem60.g 𝐺 = (ℝ D 𝐹)
fourierdlem60.domg (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
fourierdlem60.e (𝜑𝐸 ∈ (𝐺 lim 𝐵))
fourierdlem60.h 𝐻 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
fourierdlem60.n 𝑁 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
fourierdlem60.d 𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
Assertion
Ref Expression
fourierdlem60 (𝜑𝐸 ∈ (𝐻 lim 0))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐸,𝑠   𝐹,𝑠   𝐺,𝑠   𝑁,𝑠   𝑌,𝑠   𝜑,𝑠
Allowed substitution hint:   𝐻(𝑠)

Proof of Theorem fourierdlem60
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem60.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem60.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31, 2resubcld 11260 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℝ)
43rexrd 10883 . . 3 (𝜑 → (𝐴𝐵) ∈ ℝ*)
5 0red 10836 . . 3 (𝜑 → 0 ∈ ℝ)
6 fourierdlem60.altb . . . 4 (𝜑𝐴 < 𝐵)
71, 2sublt0d 11458 . . . 4 (𝜑 → ((𝐴𝐵) < 0 ↔ 𝐴 < 𝐵))
86, 7mpbird 260 . . 3 (𝜑 → (𝐴𝐵) < 0)
9 fourierdlem60.f . . . . . . 7 (𝜑𝐹:(𝐴(,)𝐵)⟶ℝ)
109adantr 484 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐹:(𝐴(,)𝐵)⟶ℝ)
111rexrd 10883 . . . . . . . 8 (𝜑𝐴 ∈ ℝ*)
1211adantr 484 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 ∈ ℝ*)
132rexrd 10883 . . . . . . . 8 (𝜑𝐵 ∈ ℝ*)
1413adantr 484 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℝ*)
152adantr 484 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℝ)
16 elioore 12965 . . . . . . . . 9 (𝑠 ∈ ((𝐴𝐵)(,)0) → 𝑠 ∈ ℝ)
1716adantl 485 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ℝ)
1815, 17readdcld 10862 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ ℝ)
192recnd 10861 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
201recnd 10861 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
2119, 20pncan3d 11192 . . . . . . . . . 10 (𝜑 → (𝐵 + (𝐴𝐵)) = 𝐴)
2221eqcomd 2743 . . . . . . . . 9 (𝜑𝐴 = (𝐵 + (𝐴𝐵)))
2322adantr 484 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 = (𝐵 + (𝐴𝐵)))
243adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) ∈ ℝ)
254adantr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) ∈ ℝ*)
26 0xr 10880 . . . . . . . . . . 11 0 ∈ ℝ*
2726a1i 11 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 0 ∈ ℝ*)
28 simpr 488 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ((𝐴𝐵)(,)0))
2925, 27, 28ioogtlbd 42763 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴𝐵) < 𝑠)
3024, 17, 15, 29ltadd2dd 10991 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + (𝐴𝐵)) < (𝐵 + 𝑠))
3123, 30eqbrtrd 5075 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐴 < (𝐵 + 𝑠))
32 0red 10836 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 0 ∈ ℝ)
3325, 27, 28iooltubd 42757 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 < 0)
3417, 32, 15, 33ltadd2dd 10991 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) < (𝐵 + 0))
3519addid1d 11032 . . . . . . . . 9 (𝜑 → (𝐵 + 0) = 𝐵)
3635adantr 484 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 0) = 𝐵)
3734, 36breqtrd 5079 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) < 𝐵)
3812, 14, 18, 31, 37eliood 42711 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ (𝐴(,)𝐵))
3910, 38ffvelrnd 6905 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐹‘(𝐵 + 𝑠)) ∈ ℝ)
40 ioossre 12996 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ℝ
4140a1i 11 . . . . . . . 8 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
42 ax-resscn 10786 . . . . . . . 8 ℝ ⊆ ℂ
4341, 42sstrdi 3913 . . . . . . 7 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
44 eqid 2737 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544, 11, 2, 6lptioo2cn 42861 . . . . . . 7 (𝜑𝐵 ∈ ((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵)))
46 fourierdlem60.y . . . . . . 7 (𝜑𝑌 ∈ (𝐹 lim 𝐵))
479, 43, 45, 46limcrecl 42845 . . . . . 6 (𝜑𝑌 ∈ ℝ)
4847adantr 484 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑌 ∈ ℝ)
4939, 48resubcld 11260 . . . 4 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐹‘(𝐵 + 𝑠)) − 𝑌) ∈ ℝ)
50 fourierdlem60.n . . . 4 𝑁 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
5149, 50fmptd 6931 . . 3 (𝜑𝑁:((𝐴𝐵)(,)0)⟶ℝ)
52 fourierdlem60.d . . . 4 𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
5317, 52fmptd 6931 . . 3 (𝜑𝐷:((𝐴𝐵)(,)0)⟶ℝ)
5450oveq2i 7224 . . . . . 6 (ℝ D 𝑁) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)))
5554a1i 11 . . . . 5 (𝜑 → (ℝ D 𝑁) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))))
5655dmeqd 5774 . . . 4 (𝜑 → dom (ℝ D 𝑁) = dom (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))))
57 reelprrecn 10821 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
5857a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
5939recnd 10861 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐹‘(𝐵 + 𝑠)) ∈ ℂ)
60 dvfre 24848 . . . . . . . . . . 11 ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
619, 41, 60syl2anc 587 . . . . . . . . . 10 (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ)
62 fourierdlem60.g . . . . . . . . . . . 12 𝐺 = (ℝ D 𝐹)
6362a1i 11 . . . . . . . . . . 11 (𝜑𝐺 = (ℝ D 𝐹))
6463feq1d 6530 . . . . . . . . . 10 (𝜑 → (𝐺:dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ))
6561, 64mpbird 260 . . . . . . . . 9 (𝜑𝐺:dom (ℝ D 𝐹)⟶ℝ)
6665adantr 484 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐺:dom (ℝ D 𝐹)⟶ℝ)
6763eqcomd 2743 . . . . . . . . . . . 12 (𝜑 → (ℝ D 𝐹) = 𝐺)
6867dmeqd 5774 . . . . . . . . . . 11 (𝜑 → dom (ℝ D 𝐹) = dom 𝐺)
69 fourierdlem60.domg . . . . . . . . . . 11 (𝜑 → dom 𝐺 = (𝐴(,)𝐵))
7068, 69eqtr2d 2778 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7170adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐴(,)𝐵) = dom (ℝ D 𝐹))
7238, 71eleqtrd 2840 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ∈ dom (ℝ D 𝐹))
7366, 72ffvelrnd 6905 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) ∈ ℝ)
74 1red 10834 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 1 ∈ ℝ)
759ffvelrnda 6904 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℝ)
7675recnd 10861 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐹𝑥) ∈ ℂ)
7770feq2d 6531 . . . . . . . . . . 11 (𝜑 → (𝐺:(𝐴(,)𝐵)⟶ℝ ↔ 𝐺:dom (ℝ D 𝐹)⟶ℝ))
7865, 77mpbird 260 . . . . . . . . . 10 (𝜑𝐺:(𝐴(,)𝐵)⟶ℝ)
7978ffvelrnda 6904 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℝ)
8019adantr 484 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝐵 ∈ ℂ)
8119adantr 484 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝐵 ∈ ℂ)
82 0red 10836 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 0 ∈ ℝ)
8358, 19dvmptc 24855 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝐵)) = (𝑠 ∈ ℝ ↦ 0))
84 ioossre 12996 . . . . . . . . . . . . 13 ((𝐴𝐵)(,)0) ⊆ ℝ
8584a1i 11 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐵)(,)0) ⊆ ℝ)
86 tgioo4 42786 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
87 iooretop 23663 . . . . . . . . . . . . 13 ((𝐴𝐵)(,)0) ∈ (topGen‘ran (,))
8887a1i 11 . . . . . . . . . . . 12 (𝜑 → ((𝐴𝐵)(,)0) ∈ (topGen‘ran (,)))
8958, 81, 82, 83, 85, 86, 44, 88dvmptres 24860 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 0))
9017recnd 10861 . . . . . . . . . . 11 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑠 ∈ ℂ)
91 recn 10819 . . . . . . . . . . . . 13 (𝑠 ∈ ℝ → 𝑠 ∈ ℂ)
9291adantl 485 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 𝑠 ∈ ℂ)
93 1red 10834 . . . . . . . . . . . 12 ((𝜑𝑠 ∈ ℝ) → 1 ∈ ℝ)
9458dvmptid 24854 . . . . . . . . . . . 12 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑠)) = (𝑠 ∈ ℝ ↦ 1))
9558, 92, 93, 94, 85, 86, 44, 88dvmptres 24860 . . . . . . . . . . 11 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
9658, 80, 32, 89, 90, 74, 95dvmptadd 24857 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (0 + 1)))
97 0p1e1 11952 . . . . . . . . . . 11 (0 + 1) = 1
9897mpteq2i 5147 . . . . . . . . . 10 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (0 + 1)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)
9996, 98eqtrdi 2794 . . . . . . . . 9 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
1009feqmptd 6780 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)))
101100eqcomd 2743 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) = 𝐹)
102101oveq2d 7229 . . . . . . . . . 10 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (ℝ D 𝐹))
10378feqmptd 6780 . . . . . . . . . 10 (𝜑𝐺 = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
104102, 67, 1033eqtrd 2781 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)))
105 fveq2 6717 . . . . . . . . 9 (𝑥 = (𝐵 + 𝑠) → (𝐹𝑥) = (𝐹‘(𝐵 + 𝑠)))
106 fveq2 6717 . . . . . . . . 9 (𝑥 = (𝐵 + 𝑠) → (𝐺𝑥) = (𝐺‘(𝐵 + 𝑠)))
10758, 58, 38, 74, 76, 79, 99, 104, 105, 106dvmptco 24869 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) · 1)))
10873recnd 10861 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) ∈ ℂ)
109108mulid1d 10850 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) · 1) = (𝐺‘(𝐵 + 𝑠)))
110109mpteq2dva 5150 . . . . . . . 8 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) · 1)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
111107, 110eqtrd 2777 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
112 limccl 24772 . . . . . . . . 9 (𝐹 lim 𝐵) ⊆ ℂ
113112, 46sseldi 3899 . . . . . . . 8 (𝜑𝑌 ∈ ℂ)
114113adantr 484 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 𝑌 ∈ ℂ)
115113adantr 484 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ) → 𝑌 ∈ ℂ)
11658, 113dvmptc 24855 . . . . . . . 8 (𝜑 → (ℝ D (𝑠 ∈ ℝ ↦ 𝑌)) = (𝑠 ∈ ℝ ↦ 0))
11758, 115, 82, 116, 85, 86, 44, 88dvmptres 24860 . . . . . . 7 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 0))
11858, 59, 73, 111, 114, 27, 117dvmptsub 24864 . . . . . 6 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) − 0)))
119108subid1d 11178 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) − 0) = (𝐺‘(𝐵 + 𝑠)))
120119mpteq2dva 5150 . . . . . 6 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐺‘(𝐵 + 𝑠)) − 0)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
121118, 120eqtrd 2777 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
122121dmeqd 5774 . . . 4 (𝜑 → dom (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))) = dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
12373ralrimiva 3105 . . . . 5 (𝜑 → ∀𝑠 ∈ ((𝐴𝐵)(,)0)(𝐺‘(𝐵 + 𝑠)) ∈ ℝ)
124 dmmptg 6105 . . . . 5 (∀𝑠 ∈ ((𝐴𝐵)(,)0)(𝐺‘(𝐵 + 𝑠)) ∈ ℝ → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = ((𝐴𝐵)(,)0))
125123, 124syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = ((𝐴𝐵)(,)0))
12656, 122, 1253eqtrd 2781 . . 3 (𝜑 → dom (ℝ D 𝑁) = ((𝐴𝐵)(,)0))
12752a1i 11 . . . . . . 7 (𝜑𝐷 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠))
128127oveq2d 7229 . . . . . 6 (𝜑 → (ℝ D 𝐷) = (ℝ D (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)))
129128, 95eqtrd 2777 . . . . 5 (𝜑 → (ℝ D 𝐷) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
130129dmeqd 5774 . . . 4 (𝜑 → dom (ℝ D 𝐷) = dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
13174ralrimiva 3105 . . . . 5 (𝜑 → ∀𝑠 ∈ ((𝐴𝐵)(,)0)1 ∈ ℝ)
132 dmmptg 6105 . . . . 5 (∀𝑠 ∈ ((𝐴𝐵)(,)0)1 ∈ ℝ → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = ((𝐴𝐵)(,)0))
133131, 132syl 17 . . . 4 (𝜑 → dom (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = ((𝐴𝐵)(,)0))
134130, 133eqtrd 2777 . . 3 (𝜑 → dom (ℝ D 𝐷) = ((𝐴𝐵)(,)0))
135 eqid 2737 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠)))
136 eqid 2737 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌)
137 eqid 2737 . . . . 5 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
13838adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) ≠ 𝐵)) → (𝐵 + 𝑠) ∈ (𝐴(,)𝐵))
139 eqid 2737 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵)
140 eqid 2737 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
141 eqid 2737 . . . . . . . 8 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠))
14285, 42sstrdi 3913 . . . . . . . . 9 (𝜑 → ((𝐴𝐵)(,)0) ⊆ ℂ)
1435recnd 10861 . . . . . . . . 9 (𝜑 → 0 ∈ ℂ)
144139, 142, 19, 143constlimc 42840 . . . . . . . 8 (𝜑𝐵 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝐵) lim 0))
145142, 140, 143idlimc 42842 . . . . . . . 8 (𝜑 → 0 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠) lim 0))
146139, 140, 141, 80, 90, 144, 145addlimc 42864 . . . . . . 7 (𝜑 → (𝐵 + 0) ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) lim 0))
14735, 146eqeltrrd 2839 . . . . . 6 (𝜑𝐵 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐵 + 𝑠)) lim 0))
148100oveq1d 7228 . . . . . . 7 (𝜑 → (𝐹 lim 𝐵) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐵))
14946, 148eleqtrd 2840 . . . . . 6 (𝜑𝑌 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐹𝑥)) lim 𝐵))
150 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐹‘(𝐵 + 𝑠)) = 𝑌) → (𝐵 + 𝑠) = 𝐵)
15118, 37ltned 10968 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐵 + 𝑠) ≠ 𝐵)
152151neneqd 2945 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ¬ (𝐵 + 𝑠) = 𝐵)
153152adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → ¬ (𝐵 + 𝑠) = 𝐵)
154153adantr 484 . . . . . . 7 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐹‘(𝐵 + 𝑠)) = 𝑌) → ¬ (𝐵 + 𝑠) = 𝐵)
155150, 154condan 818 . . . . . 6 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → (𝐹‘(𝐵 + 𝑠)) = 𝑌)
156138, 76, 147, 149, 105, 155limcco 24790 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐹‘(𝐵 + 𝑠))) lim 0))
157136, 142, 113, 143constlimc 42840 . . . . 5 (𝜑𝑌 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑌) lim 0))
158135, 136, 137, 59, 114, 156, 157sublimc 42868 . . . 4 (𝜑 → (𝑌𝑌) ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0))
159113subidd 11177 . . . 4 (𝜑 → (𝑌𝑌) = 0)
16050eqcomi 2746 . . . . . 6 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) = 𝑁
161160oveq1i 7223 . . . . 5 ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0)
162161a1i 11 . . . 4 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝐹‘(𝐵 + 𝑠)) − 𝑌)) lim 0) = (𝑁 lim 0))
163158, 159, 1623eltr3d 2852 . . 3 (𝜑 → 0 ∈ (𝑁 lim 0))
164142, 52, 143idlimc 42842 . . 3 (𝜑 → 0 ∈ (𝐷 lim 0))
165 ubioo 12967 . . . . 5 ¬ 0 ∈ ((𝐴𝐵)(,)0)
166165a1i 11 . . . 4 (𝜑 → ¬ 0 ∈ ((𝐴𝐵)(,)0))
167 mptresid 5918 . . . . . . 7 ( I ↾ ((𝐴𝐵)(,)0)) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 𝑠)
168127, 167eqtr4di 2796 . . . . . 6 (𝜑𝐷 = ( I ↾ ((𝐴𝐵)(,)0)))
169168rneqd 5807 . . . . 5 (𝜑 → ran 𝐷 = ran ( I ↾ ((𝐴𝐵)(,)0)))
170 rnresi 5943 . . . . 5 ran ( I ↾ ((𝐴𝐵)(,)0)) = ((𝐴𝐵)(,)0)
171169, 170eqtr2di 2795 . . . 4 (𝜑 → ((𝐴𝐵)(,)0) = ran 𝐷)
172166, 171neleqtrd 2859 . . 3 (𝜑 → ¬ 0 ∈ ran 𝐷)
173 0ne1 11901 . . . . . 6 0 ≠ 1
174173neii 2942 . . . . 5 ¬ 0 = 1
175 elsng 4555 . . . . . 6 (0 ∈ ℝ → (0 ∈ {1} ↔ 0 = 1))
1765, 175syl 17 . . . . 5 (𝜑 → (0 ∈ {1} ↔ 0 = 1))
177174, 176mtbiri 330 . . . 4 (𝜑 → ¬ 0 ∈ {1})
178129rneqd 5807 . . . . 5 (𝜑 → ran (ℝ D 𝐷) = ran (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1))
179 eqid 2737 . . . . . 6 (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)
18026a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℝ*)
181 ioon0 12961 . . . . . . . 8 (((𝐴𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → (((𝐴𝐵)(,)0) ≠ ∅ ↔ (𝐴𝐵) < 0))
1824, 180, 181syl2anc 587 . . . . . . 7 (𝜑 → (((𝐴𝐵)(,)0) ≠ ∅ ↔ (𝐴𝐵) < 0))
1838, 182mpbird 260 . . . . . 6 (𝜑 → ((𝐴𝐵)(,)0) ≠ ∅)
184179, 183rnmptc 7022 . . . . 5 (𝜑 → ran (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1) = {1})
185178, 184eqtr2d 2778 . . . 4 (𝜑 → {1} = ran (ℝ D 𝐷))
186177, 185neleqtrd 2859 . . 3 (𝜑 → ¬ 0 ∈ ran (ℝ D 𝐷))
18779recnd 10861 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝐺𝑥) ∈ ℂ)
188 fourierdlem60.e . . . . . 6 (𝜑𝐸 ∈ (𝐺 lim 𝐵))
189103oveq1d 7228 . . . . . 6 (𝜑 → (𝐺 lim 𝐵) = ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐵))
190188, 189eleqtrd 2840 . . . . 5 (𝜑𝐸 ∈ ((𝑥 ∈ (𝐴(,)𝐵) ↦ (𝐺𝑥)) lim 𝐵))
191 simplrr 778 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐺‘(𝐵 + 𝑠)) = 𝐸) → (𝐵 + 𝑠) = 𝐵)
192153adantr 484 . . . . . 6 (((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) ∧ ¬ (𝐺‘(𝐵 + 𝑠)) = 𝐸) → ¬ (𝐵 + 𝑠) = 𝐵)
193191, 192condan 818 . . . . 5 ((𝜑 ∧ (𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐵 + 𝑠) = 𝐵)) → (𝐺‘(𝐵 + 𝑠)) = 𝐸)
194138, 187, 147, 190, 106, 193limcco 24790 . . . 4 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) lim 0))
195108div1d 11600 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) / 1) = (𝐺‘(𝐵 + 𝑠)))
19654, 121syl5eq 2790 . . . . . . . . . . 11 (𝜑 → (ℝ D 𝑁) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
197196adantr 484 . . . . . . . . . 10 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (ℝ D 𝑁) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))))
198197fveq1d 6719 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((ℝ D 𝑁)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠))
199 fvmpt4 42454 . . . . . . . . . 10 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ (𝐺‘(𝐵 + 𝑠)) ∈ ℝ) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠) = (𝐺‘(𝐵 + 𝑠)))
20028, 73, 199syl2anc 587 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠)))‘𝑠) = (𝐺‘(𝐵 + 𝑠)))
201198, 200eqtr2d 2778 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) = ((ℝ D 𝑁)‘𝑠))
202129fveq1d 6719 . . . . . . . . . 10 (𝜑 → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠))
203202adantr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((ℝ D 𝐷)‘𝑠) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠))
204 fvmpt4 42454 . . . . . . . . . 10 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ 1 ∈ ℝ) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠) = 1)
20528, 74, 204syl2anc 587 . . . . . . . . 9 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ 1)‘𝑠) = 1)
206203, 205eqtr2d 2778 . . . . . . . 8 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → 1 = ((ℝ D 𝐷)‘𝑠))
207201, 206oveq12d 7231 . . . . . . 7 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝐺‘(𝐵 + 𝑠)) / 1) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
208195, 207eqtr3d 2779 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐺‘(𝐵 + 𝑠)) = (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠)))
209208mpteq2dva 5150 . . . . 5 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))))
210209oveq1d 7228 . . . 4 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (𝐺‘(𝐵 + 𝑠))) lim 0) = ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
211194, 210eleqtrd 2840 . . 3 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((ℝ D 𝑁)‘𝑠) / ((ℝ D 𝐷)‘𝑠))) lim 0))
2124, 5, 8, 51, 53, 126, 134, 163, 164, 172, 186, 211lhop2 24912 . 2 (𝜑𝐸 ∈ ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0))
21350fvmpt2 6829 . . . . . . 7 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ ((𝐹‘(𝐵 + 𝑠)) − 𝑌) ∈ ℝ) → (𝑁𝑠) = ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
21428, 49, 213syl2anc 587 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝑁𝑠) = ((𝐹‘(𝐵 + 𝑠)) − 𝑌))
21552fvmpt2 6829 . . . . . . 7 ((𝑠 ∈ ((𝐴𝐵)(,)0) ∧ 𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐷𝑠) = 𝑠)
21628, 28, 215syl2anc 587 . . . . . 6 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → (𝐷𝑠) = 𝑠)
217214, 216oveq12d 7231 . . . . 5 ((𝜑𝑠 ∈ ((𝐴𝐵)(,)0)) → ((𝑁𝑠) / (𝐷𝑠)) = (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
218217mpteq2dva 5150 . . . 4 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠)))
219 fourierdlem60.h . . . 4 𝐻 = (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ (((𝐹‘(𝐵 + 𝑠)) − 𝑌) / 𝑠))
220218, 219eqtr4di 2796 . . 3 (𝜑 → (𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) = 𝐻)
221220oveq1d 7228 . 2 (𝜑 → ((𝑠 ∈ ((𝐴𝐵)(,)0) ↦ ((𝑁𝑠) / (𝐷𝑠))) lim 0) = (𝐻 lim 0))
222212, 221eleqtrd 2840 1 (𝜑𝐸 ∈ (𝐻 lim 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wss 3866  c0 4237  {csn 4541  {cpr 4543   class class class wbr 5053  cmpt 5135   I cid 5454  dom cdm 5551  ran crn 5552  cres 5553  wf 6376  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734  *cxr 10866   < clt 10867  cmin 11062   / cdiv 11489  (,)cioo 12935  TopOpenctopn 16926  topGenctg 16942  fldccnfld 20363   lim climc 24759   D cdv 24760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764
This theorem is referenced by:  fourierdlem74  43396
  Copyright terms: Public domain W3C validator