![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfabd2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of nfabd2 2970 as of 23-May-2023. (Contributed by Mario Carneiro, 8-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfabd2.1 | ⊢ Ⅎ𝑦𝜑 |
nfabd2.2 | ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfabd2OLD | ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1892 | . . . 4 ⊢ Ⅎ𝑧(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) | |
2 | df-clab 2776 | . . . . 5 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
3 | nfabd2.1 | . . . . . . 7 ⊢ Ⅎ𝑦𝜑 | |
4 | nfnae 2413 | . . . . . . 7 ⊢ Ⅎ𝑦 ¬ ∀𝑥 𝑥 = 𝑦 | |
5 | 3, 4 | nfan 1881 | . . . . . 6 ⊢ Ⅎ𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) |
6 | nfabd2.2 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) | |
7 | 5, 6 | nfsbd 2520 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥[𝑧 / 𝑦]𝜓) |
8 | 2, 7 | nfxfrd 1835 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑧 ∈ {𝑦 ∣ 𝜓}) |
9 | 1, 8 | nfcd 2940 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
10 | 9 | ex 413 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥{𝑦 ∣ 𝜓})) |
11 | nfab1 2951 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜓} | |
12 | eqidd 2796 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑦 ∣ 𝜓} = {𝑦 ∣ 𝜓}) | |
13 | 12 | drnfc1 2966 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥{𝑦 ∣ 𝜓} ↔ Ⅎ𝑦{𝑦 ∣ 𝜓})) |
14 | 11, 13 | mpbiri 259 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
15 | 10, 14 | pm2.61d2 182 | 1 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1520 Ⅎwnf 1765 [wsb 2042 ∈ wcel 2081 {cab 2775 Ⅎwnfc 2933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |