MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfimad Structured version   Visualization version   GIF version

Theorem nfimad 5905
Description: Deduction version of bound-variable hypothesis builder nfima 5904. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfimad.2 (𝜑𝑥𝐴)
nfimad.3 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfimad (𝜑𝑥(𝐴𝐵))

Proof of Theorem nfimad
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2963 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
2 nfaba1 2963 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐵}
31, 2nfima 5904 . 2 𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵})
4 nfimad.2 . . 3 (𝜑𝑥𝐴)
5 nfimad.3 . . 3 (𝜑𝑥𝐵)
6 nfnfc1 2958 . . . . 5 𝑥𝑥𝐴
7 nfnfc1 2958 . . . . 5 𝑥𝑥𝐵
86, 7nfan 1900 . . . 4 𝑥(𝑥𝐴𝑥𝐵)
9 abidnf 3642 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
109imaeq1d 5895 . . . . 5 (𝑥𝐴 → ({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧𝐵}))
11 abidnf 3642 . . . . . 6 (𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧𝐵} = 𝐵)
1211imaeq2d 5896 . . . . 5 (𝑥𝐵 → (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴𝐵))
1310, 12sylan9eq 2853 . . . 4 ((𝑥𝐴𝑥𝐵) → ({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) = (𝐴𝐵))
148, 13nfceqdf 2951 . . 3 ((𝑥𝐴𝑥𝐵) → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) ↔ 𝑥(𝐴𝐵)))
154, 5, 14syl2anc 587 . 2 (𝜑 → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐴} “ {𝑧 ∣ ∀𝑥 𝑧𝐵}) ↔ 𝑥(𝐴𝐵)))
163, 15mpbii 236 1 (𝜑𝑥(𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536  wcel 2111  {cab 2776  wnfc 2936  cima 5522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-xp 5525  df-cnv 5527  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator