| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfimad | Structured version Visualization version GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nfima 6042. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfimad.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfimad.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfimad | ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2900 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
| 2 | nfaba1 2900 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} | |
| 3 | 1, 2 | nfima 6042 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) |
| 4 | nfimad.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 5 | nfimad.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 6 | nfnfc1 2895 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
| 7 | nfnfc1 2895 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
| 8 | 6, 7 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
| 9 | abidnf 3676 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
| 10 | 9 | imaeq1d 6033 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵})) |
| 11 | abidnf 3676 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) | |
| 12 | 11 | imaeq2d 6034 | . . . . 5 ⊢ (Ⅎ𝑥𝐵 → (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
| 13 | 10, 12 | sylan9eq 2785 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
| 14 | 8, 13 | nfceqdf 2888 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
| 15 | 4, 5, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
| 16 | 3, 15 | mpbii 233 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |