![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfimad | Structured version Visualization version GIF version |
Description: Deduction version of bound-variable hypothesis builder nfima 6097. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfimad.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfimad.3 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfimad | ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfaba1 2916 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
2 | nfaba1 2916 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} | |
3 | 1, 2 | nfima 6097 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) |
4 | nfimad.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | nfimad.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
6 | nfnfc1 2911 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
7 | nfnfc1 2911 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐵 | |
8 | 6, 7 | nfan 1898 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) |
9 | abidnf 3724 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
10 | 9 | imaeq1d 6088 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵})) |
11 | abidnf 3724 | . . . . . 6 ⊢ (Ⅎ𝑥𝐵 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵} = 𝐵) | |
12 | 11 | imaeq2d 6089 | . . . . 5 ⊢ (Ⅎ𝑥𝐵 → (𝐴 “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
13 | 10, 12 | sylan9eq 2800 | . . . 4 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) = (𝐴 “ 𝐵)) |
14 | 8, 13 | nfceqdf 2904 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝐵) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
15 | 4, 5, 14 | syl2anc 583 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} “ {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐵}) ↔ Ⅎ𝑥(𝐴 “ 𝐵))) |
16 | 3, 15 | mpbii 233 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐴 “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |