Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nffvd | Structured version Visualization version GIF version |
Description: Deduction version of bound-variable hypothesis builder nffv 6784. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nffvd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
nffvd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nffvd | ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfaba1 2915 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} | |
2 | nfaba1 2915 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
3 | 1, 2 | nffv 6784 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) |
4 | nffvd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
5 | nffvd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | nfnfc1 2910 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐹 | |
7 | nfnfc1 2910 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
8 | 6, 7 | nfan 1902 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) |
9 | abidnf 3638 | . . . . . 6 ⊢ (Ⅎ𝑥𝐹 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} = 𝐹) | |
10 | 9 | adantr 481 | . . . . 5 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} = 𝐹) |
11 | abidnf 3638 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
12 | 11 | adantl 482 | . . . . 5 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
13 | 10, 12 | fveq12d 6781 | . . . 4 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) = (𝐹‘𝐴)) |
14 | 8, 13 | nfceqdf 2902 | . . 3 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) ↔ Ⅎ𝑥(𝐹‘𝐴))) |
15 | 4, 5, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) ↔ Ⅎ𝑥(𝐹‘𝐴))) |
16 | 3, 15 | mpbii 232 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 Ⅎwnfc 2887 ‘cfv 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: nfovd 7304 nfixpw 8704 nfixp 8705 bj-gabima 35128 |
Copyright terms: Public domain | W3C validator |