MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffvd Structured version   Visualization version   GIF version

Theorem nffvd 6424
Description: Deduction version of bound-variable hypothesis builder nffv 6422. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nffvd.2 (𝜑𝑥𝐹)
nffvd.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nffvd (𝜑𝑥(𝐹𝐴))

Proof of Theorem nffvd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2948 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐹}
2 nfaba1 2948 . . 3 𝑥{𝑧 ∣ ∀𝑥 𝑧𝐴}
31, 2nffv 6422 . 2 𝑥({𝑧 ∣ ∀𝑥 𝑧𝐹}‘{𝑧 ∣ ∀𝑥 𝑧𝐴})
4 nffvd.2 . . 3 (𝜑𝑥𝐹)
5 nffvd.3 . . 3 (𝜑𝑥𝐴)
6 nfnfc1 2945 . . . . 5 𝑥𝑥𝐹
7 nfnfc1 2945 . . . . 5 𝑥𝑥𝐴
86, 7nfan 1999 . . . 4 𝑥(𝑥𝐹𝑥𝐴)
9 abidnf 3570 . . . . . 6 (𝑥𝐹 → {𝑧 ∣ ∀𝑥 𝑧𝐹} = 𝐹)
109adantr 473 . . . . 5 ((𝑥𝐹𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧𝐹} = 𝐹)
11 abidnf 3570 . . . . . 6 (𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
1211adantl 474 . . . . 5 ((𝑥𝐹𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧𝐴} = 𝐴)
1310, 12fveq12d 6419 . . . 4 ((𝑥𝐹𝑥𝐴) → ({𝑧 ∣ ∀𝑥 𝑧𝐹}‘{𝑧 ∣ ∀𝑥 𝑧𝐴}) = (𝐹𝐴))
148, 13nfceqdf 2938 . . 3 ((𝑥𝐹𝑥𝐴) → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐹}‘{𝑧 ∣ ∀𝑥 𝑧𝐴}) ↔ 𝑥(𝐹𝐴)))
154, 5, 14syl2anc 580 . 2 (𝜑 → (𝑥({𝑧 ∣ ∀𝑥 𝑧𝐹}‘{𝑧 ∣ ∀𝑥 𝑧𝐴}) ↔ 𝑥(𝐹𝐴)))
163, 15mpbii 225 1 (𝜑𝑥(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wal 1651   = wceq 1653  wcel 2157  {cab 2786  wnfc 2929  cfv 6102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-iota 6065  df-fv 6110
This theorem is referenced by:  nfovd  6908  nfixp  8168
  Copyright terms: Public domain W3C validator