| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffvd | Structured version Visualization version GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nffv 6871. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nffvd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐹) |
| nffvd.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| Ref | Expression |
|---|---|
| nffvd | ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfaba1 2900 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} | |
| 2 | nfaba1 2900 | . . 3 ⊢ Ⅎ𝑥{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} | |
| 3 | 1, 2 | nffv 6871 | . 2 ⊢ Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) |
| 4 | nffvd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐹) | |
| 5 | nffvd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | nfnfc1 2895 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐹 | |
| 7 | nfnfc1 2895 | . . . . 5 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 | |
| 8 | 6, 7 | nfan 1899 | . . . 4 ⊢ Ⅎ𝑥(Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) |
| 9 | abidnf 3676 | . . . . . 6 ⊢ (Ⅎ𝑥𝐹 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} = 𝐹) | |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹} = 𝐹) |
| 11 | abidnf 3676 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | |
| 12 | 11 | adantl 481 | . . . . 5 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) |
| 13 | 10, 12 | fveq12d 6868 | . . . 4 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → ({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) = (𝐹‘𝐴)) |
| 14 | 8, 13 | nfceqdf 2888 | . . 3 ⊢ ((Ⅎ𝑥𝐹 ∧ Ⅎ𝑥𝐴) → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) ↔ Ⅎ𝑥(𝐹‘𝐴))) |
| 15 | 4, 5, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → (Ⅎ𝑥({𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐹}‘{𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴}) ↔ Ⅎ𝑥(𝐹‘𝐴))) |
| 16 | 3, 15 | mpbii 233 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2877 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 |
| This theorem is referenced by: nfovd 7419 nfixpw 8892 nfixp 8893 bj-gabima 36935 |
| Copyright terms: Public domain | W3C validator |