Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2 Structured version   Visualization version   GIF version

Theorem setrec2 44298
Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs(𝐹) is a subclass of all classes 𝐶 that are closed under 𝐹. Taken together, theorems setrec1 44294 and setrec2v 44299 uniquely determine setrecs(𝐹) to be the minimal class closed under 𝐹.

We express this by saying that if 𝐹 respects the relation and 𝐶 is closed under 𝐹, then 𝐵𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7424) to the other class.

(Contributed by Emmett Weisz, 2-Sep-2021.)

Hypotheses
Ref Expression
setrec2.1 𝑎𝐹
setrec2.2 𝐵 = setrecs(𝐹)
setrec2.3 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
Assertion
Ref Expression
setrec2 (𝜑𝐵𝐶)
Distinct variable group:   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐹(𝑎)

Proof of Theorem setrec2
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setrec2.1 . . 3 𝑎𝐹
2 nfcv 2949 . . . . . 6 𝑎𝑥
3 nfcv 2949 . . . . . 6 𝑎𝑢
42, 1, 3nfbr 5009 . . . . 5 𝑎 𝑥𝐹𝑢
54nfeu 2639 . . . 4 𝑎∃!𝑢 𝑥𝐹𝑢
65nfab 2955 . . 3 𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}
71, 6nfres 5736 . 2 𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})
8 setrec2.2 . . 3 𝐵 = setrecs(𝐹)
9 setrec2lem1 44296 . . . . . . . . . . . 12 ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹𝑤)
109sseq1i 3916 . . . . . . . . . . 11 (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹𝑤) ⊆ 𝑧)
1110imbi2i 337 . . . . . . . . . 10 ((𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
1211imbi2i 337 . . . . . . . . 9 ((𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
1312albii 1801 . . . . . . . 8 (∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
1413imbi1i 351 . . . . . . 7 ((∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧))
1514albii 1801 . . . . . 6 (∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧))
1615abbii 2861 . . . . 5 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1716unieqi 4754 . . . 4 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
18 df-setrecs 44287 . . . 4 setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
19 df-setrecs 44287 . . . 4 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2017, 18, 193eqtr4ri 2830 . . 3 setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}))
218, 20eqtri 2819 . 2 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}))
22 setrec2lem2 44297 . 2 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})
23 setrec2.3 . . 3 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
24 setrec2lem1 44296 . . . . . 6 ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹𝑎)
2524sseq1i 3916 . . . . 5 (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹𝑎) ⊆ 𝐶)
2625imbi2i 337 . . . 4 ((𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
2726albii 1801 . . 3 (∀𝑎(𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
2823, 27sylibr 235 . 2 (𝜑 → ∀𝑎(𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶))
297, 21, 22, 28setrec2fun 44295 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1520   = wceq 1522  ∃!weu 2611  {cab 2775  wnfc 2933  wss 3859   cuni 4745   class class class wbr 4962  cres 5445  cfv 6225  setrecscsetrecs 44286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fv 6233  df-setrecs 44287
This theorem is referenced by:  setrec2v  44299
  Copyright terms: Public domain W3C validator