| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2 | Structured version Visualization version GIF version | ||
| Description: This is the second of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs(𝐹) is a subclass of all classes 𝐶 that
are closed
under 𝐹. Taken together, Theorems setrec1 49680 and setrec2v 49685
uniquely determine setrecs(𝐹) to be the minimal class closed
under 𝐹.
We express this by saying that if 𝐹 respects the ⊆ relation and 𝐶 is closed under 𝐹, then 𝐵 ⊆ 𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7829) to the other class. (Contributed by Emmett Weisz, 2-Sep-2021.) |
| Ref | Expression |
|---|---|
| setrec2.1 | ⊢ Ⅎ𝑎𝐹 |
| setrec2.2 | ⊢ 𝐵 = setrecs(𝐹) |
| setrec2.3 | ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
| Ref | Expression |
|---|---|
| setrec2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setrec2.1 | . . 3 ⊢ Ⅎ𝑎𝐹 | |
| 2 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑎𝑥 | |
| 3 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑎𝑢 | |
| 4 | 2, 1, 3 | nfbr 5154 | . . . . 5 ⊢ Ⅎ𝑎 𝑥𝐹𝑢 |
| 5 | 4 | nfeuw 2586 | . . . 4 ⊢ Ⅎ𝑎∃!𝑢 𝑥𝐹𝑢 |
| 6 | 5 | nfab 2897 | . . 3 ⊢ Ⅎ𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢} |
| 7 | 1, 6 | nfres 5952 | . 2 ⊢ Ⅎ𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) |
| 8 | setrec2.2 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
| 9 | setrec2lem1 49682 | . . . . . . . . . . . 12 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹‘𝑤) | |
| 10 | 9 | sseq1i 3975 | . . . . . . . . . . 11 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ 𝑧) |
| 11 | 10 | imbi2i 336 | . . . . . . . . . 10 ⊢ ((𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
| 12 | 11 | imbi2i 336 | . . . . . . . . 9 ⊢ ((𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
| 13 | 12 | albii 1819 | . . . . . . . 8 ⊢ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
| 14 | 13 | imbi1i 349 | . . . . . . 7 ⊢ ((∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
| 15 | 14 | albii 1819 | . . . . . 6 ⊢ (∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
| 16 | 15 | abbii 2796 | . . . . 5 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 17 | 16 | unieqi 4883 | . . . 4 ⊢ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 18 | df-setrecs 49673 | . . . 4 ⊢ setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 19 | df-setrecs 49673 | . . . 4 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 20 | 17, 18, 19 | 3eqtr4ri 2763 | . . 3 ⊢ setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
| 21 | 8, 20 | eqtri 2752 | . 2 ⊢ 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
| 22 | setrec2lem2 49683 | . 2 ⊢ Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) | |
| 23 | setrec2.3 | . . 3 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) | |
| 24 | setrec2lem1 49682 | . . . . . 6 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹‘𝑎) | |
| 25 | 24 | sseq1i 3975 | . . . . 5 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹‘𝑎) ⊆ 𝐶) |
| 26 | 25 | imbi2i 336 | . . . 4 ⊢ ((𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
| 27 | 26 | albii 1819 | . . 3 ⊢ (∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
| 28 | 23, 27 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶)) |
| 29 | 7, 21, 22, 28 | setrec2fun 49681 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∃!weu 2561 {cab 2707 Ⅎwnfc 2876 ⊆ wss 3914 ∪ cuni 4871 class class class wbr 5107 ↾ cres 5640 ‘cfv 6511 setrecscsetrecs 49672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-setrecs 49673 |
| This theorem is referenced by: setrec2v 49685 setrec2mpt 49686 |
| Copyright terms: Public domain | W3C validator |