![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2 | Structured version Visualization version GIF version |
Description: This is the second of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs(𝐹) is a subclass of all classes 𝐶 that
are closed
under 𝐹. Taken together, Theorems setrec1 47736 and setrec2v 47741
uniquely determine setrecs(𝐹) to be the minimal class closed
under 𝐹.
We express this by saying that if 𝐹 respects the ⊆ relation and 𝐶 is closed under 𝐹, then 𝐵 ⊆ 𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7842) to the other class. (Contributed by Emmett Weisz, 2-Sep-2021.) |
Ref | Expression |
---|---|
setrec2.1 | ⊢ Ⅎ𝑎𝐹 |
setrec2.2 | ⊢ 𝐵 = setrecs(𝐹) |
setrec2.3 | ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
Ref | Expression |
---|---|
setrec2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec2.1 | . . 3 ⊢ Ⅎ𝑎𝐹 | |
2 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑎𝑥 | |
3 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑎𝑢 | |
4 | 2, 1, 3 | nfbr 5196 | . . . . 5 ⊢ Ⅎ𝑎 𝑥𝐹𝑢 |
5 | 4 | nfeuw 2588 | . . . 4 ⊢ Ⅎ𝑎∃!𝑢 𝑥𝐹𝑢 |
6 | 5 | nfab 2910 | . . 3 ⊢ Ⅎ𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢} |
7 | 1, 6 | nfres 5984 | . 2 ⊢ Ⅎ𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) |
8 | setrec2.2 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
9 | setrec2lem1 47738 | . . . . . . . . . . . 12 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹‘𝑤) | |
10 | 9 | sseq1i 4011 | . . . . . . . . . . 11 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ 𝑧) |
11 | 10 | imbi2i 336 | . . . . . . . . . 10 ⊢ ((𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
12 | 11 | imbi2i 336 | . . . . . . . . 9 ⊢ ((𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
13 | 12 | albii 1822 | . . . . . . . 8 ⊢ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
14 | 13 | imbi1i 350 | . . . . . . 7 ⊢ ((∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
15 | 14 | albii 1822 | . . . . . 6 ⊢ (∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
16 | 15 | abbii 2803 | . . . . 5 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
17 | 16 | unieqi 4922 | . . . 4 ⊢ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
18 | df-setrecs 47729 | . . . 4 ⊢ setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
19 | df-setrecs 47729 | . . . 4 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
20 | 17, 18, 19 | 3eqtr4ri 2772 | . . 3 ⊢ setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
21 | 8, 20 | eqtri 2761 | . 2 ⊢ 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
22 | setrec2lem2 47739 | . 2 ⊢ Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) | |
23 | setrec2.3 | . . 3 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) | |
24 | setrec2lem1 47738 | . . . . . 6 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹‘𝑎) | |
25 | 24 | sseq1i 4011 | . . . . 5 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹‘𝑎) ⊆ 𝐶) |
26 | 25 | imbi2i 336 | . . . 4 ⊢ ((𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
27 | 26 | albii 1822 | . . 3 ⊢ (∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
28 | 23, 27 | sylibr 233 | . 2 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶)) |
29 | 7, 21, 22, 28 | setrec2fun 47737 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 = wceq 1542 ∃!weu 2563 {cab 2710 Ⅎwnfc 2884 ⊆ wss 3949 ∪ cuni 4909 class class class wbr 5149 ↾ cres 5679 ‘cfv 6544 setrecscsetrecs 47728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-setrecs 47729 |
This theorem is referenced by: setrec2v 47741 setrec2mpt 47742 |
Copyright terms: Public domain | W3C validator |