![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2 | Structured version Visualization version GIF version |
Description: This is the second of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs(𝐹) is a subclass of all classes 𝐶 that
are closed
under 𝐹. Taken together, Theorems setrec1 47384 and setrec2v 47389
uniquely determine setrecs(𝐹) to be the minimal class closed
under 𝐹.
We express this by saying that if 𝐹 respects the ⊆ relation and 𝐶 is closed under 𝐹, then 𝐵 ⊆ 𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7825) to the other class. (Contributed by Emmett Weisz, 2-Sep-2021.) |
Ref | Expression |
---|---|
setrec2.1 | ⊢ Ⅎ𝑎𝐹 |
setrec2.2 | ⊢ 𝐵 = setrecs(𝐹) |
setrec2.3 | ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
Ref | Expression |
---|---|
setrec2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec2.1 | . . 3 ⊢ Ⅎ𝑎𝐹 | |
2 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑎𝑥 | |
3 | nfcv 2902 | . . . . . 6 ⊢ Ⅎ𝑎𝑢 | |
4 | 2, 1, 3 | nfbr 5188 | . . . . 5 ⊢ Ⅎ𝑎 𝑥𝐹𝑢 |
5 | 4 | nfeuw 2586 | . . . 4 ⊢ Ⅎ𝑎∃!𝑢 𝑥𝐹𝑢 |
6 | 5 | nfab 2908 | . . 3 ⊢ Ⅎ𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢} |
7 | 1, 6 | nfres 5975 | . 2 ⊢ Ⅎ𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) |
8 | setrec2.2 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
9 | setrec2lem1 47386 | . . . . . . . . . . . 12 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹‘𝑤) | |
10 | 9 | sseq1i 4006 | . . . . . . . . . . 11 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ 𝑧) |
11 | 10 | imbi2i 335 | . . . . . . . . . 10 ⊢ ((𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
12 | 11 | imbi2i 335 | . . . . . . . . 9 ⊢ ((𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
13 | 12 | albii 1821 | . . . . . . . 8 ⊢ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
14 | 13 | imbi1i 349 | . . . . . . 7 ⊢ ((∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
15 | 14 | albii 1821 | . . . . . 6 ⊢ (∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
16 | 15 | abbii 2801 | . . . . 5 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
17 | 16 | unieqi 4914 | . . . 4 ⊢ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
18 | df-setrecs 47377 | . . . 4 ⊢ setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
19 | df-setrecs 47377 | . . . 4 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
20 | 17, 18, 19 | 3eqtr4ri 2770 | . . 3 ⊢ setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
21 | 8, 20 | eqtri 2759 | . 2 ⊢ 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
22 | setrec2lem2 47387 | . 2 ⊢ Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) | |
23 | setrec2.3 | . . 3 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) | |
24 | setrec2lem1 47386 | . . . . . 6 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹‘𝑎) | |
25 | 24 | sseq1i 4006 | . . . . 5 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹‘𝑎) ⊆ 𝐶) |
26 | 25 | imbi2i 335 | . . . 4 ⊢ ((𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
27 | 26 | albii 1821 | . . 3 ⊢ (∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
28 | 23, 27 | sylibr 233 | . 2 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶)) |
29 | 7, 21, 22, 28 | setrec2fun 47385 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 = wceq 1541 ∃!weu 2561 {cab 2708 Ⅎwnfc 2882 ⊆ wss 3944 ∪ cuni 4901 class class class wbr 5141 ↾ cres 5671 ‘cfv 6532 setrecscsetrecs 47376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fv 6540 df-setrecs 47377 |
This theorem is referenced by: setrec2v 47389 setrec2mpt 47390 |
Copyright terms: Public domain | W3C validator |