Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2 Structured version   Visualization version   GIF version

Theorem setrec2 49681
Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs(𝐹) is a subclass of all classes 𝐶 that are closed under 𝐹. Taken together, Theorems setrec1 49677 and setrec2v 49682 uniquely determine setrecs(𝐹) to be the minimal class closed under 𝐹.

We express this by saying that if 𝐹 respects the relation and 𝐶 is closed under 𝐹, then 𝐵𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7793) to the other class.

(Contributed by Emmett Weisz, 2-Sep-2021.)

Hypotheses
Ref Expression
setrec2.1 𝑎𝐹
setrec2.2 𝐵 = setrecs(𝐹)
setrec2.3 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
Assertion
Ref Expression
setrec2 (𝜑𝐵𝐶)
Distinct variable group:   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐹(𝑎)

Proof of Theorem setrec2
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setrec2.1 . . 3 𝑎𝐹
2 nfcv 2891 . . . . . 6 𝑎𝑥
3 nfcv 2891 . . . . . 6 𝑎𝑢
42, 1, 3nfbr 5142 . . . . 5 𝑎 𝑥𝐹𝑢
54nfeuw 2586 . . . 4 𝑎∃!𝑢 𝑥𝐹𝑢
65nfab 2897 . . 3 𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}
71, 6nfres 5936 . 2 𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})
8 setrec2.2 . . 3 𝐵 = setrecs(𝐹)
9 setrec2lem1 49679 . . . . . . . . . . . 12 ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹𝑤)
109sseq1i 3966 . . . . . . . . . . 11 (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹𝑤) ⊆ 𝑧)
1110imbi2i 336 . . . . . . . . . 10 ((𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
1211imbi2i 336 . . . . . . . . 9 ((𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
1312albii 1819 . . . . . . . 8 (∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
1413imbi1i 349 . . . . . . 7 ((∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧))
1514albii 1819 . . . . . 6 (∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧))
1615abbii 2796 . . . . 5 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1716unieqi 4873 . . . 4 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
18 df-setrecs 49670 . . . 4 setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
19 df-setrecs 49670 . . . 4 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2017, 18, 193eqtr4ri 2763 . . 3 setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}))
218, 20eqtri 2752 . 2 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}))
22 setrec2lem2 49680 . 2 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})
23 setrec2.3 . . 3 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
24 setrec2lem1 49679 . . . . . 6 ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹𝑎)
2524sseq1i 3966 . . . . 5 (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹𝑎) ⊆ 𝐶)
2625imbi2i 336 . . . 4 ((𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
2726albii 1819 . . 3 (∀𝑎(𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
2823, 27sylibr 234 . 2 (𝜑 → ∀𝑎(𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶))
297, 21, 22, 28setrec2fun 49678 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538   = wceq 1540  ∃!weu 2561  {cab 2707  wnfc 2876  wss 3905   cuni 4861   class class class wbr 5095  cres 5625  cfv 6486  setrecscsetrecs 49669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fv 6494  df-setrecs 49670
This theorem is referenced by:  setrec2v  49682  setrec2mpt  49683
  Copyright terms: Public domain W3C validator