Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2 Structured version   Visualization version   GIF version

Theorem setrec2 44805
Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs(𝐹) is a subclass of all classes 𝐶 that are closed under 𝐹. Taken together, theorems setrec1 44801 and setrec2v 44806 uniquely determine setrecs(𝐹) to be the minimal class closed under 𝐹.

We express this by saying that if 𝐹 respects the relation and 𝐶 is closed under 𝐹, then 𝐵𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7570) to the other class.

(Contributed by Emmett Weisz, 2-Sep-2021.)

Hypotheses
Ref Expression
setrec2.1 𝑎𝐹
setrec2.2 𝐵 = setrecs(𝐹)
setrec2.3 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
Assertion
Ref Expression
setrec2 (𝜑𝐵𝐶)
Distinct variable group:   𝐶,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)   𝐹(𝑎)

Proof of Theorem setrec2
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setrec2.1 . . 3 𝑎𝐹
2 nfcv 2979 . . . . . 6 𝑎𝑥
3 nfcv 2979 . . . . . 6 𝑎𝑢
42, 1, 3nfbr 5115 . . . . 5 𝑎 𝑥𝐹𝑢
54nfeuw 2679 . . . 4 𝑎∃!𝑢 𝑥𝐹𝑢
65nfab 2986 . . 3 𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}
71, 6nfres 5857 . 2 𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})
8 setrec2.2 . . 3 𝐵 = setrecs(𝐹)
9 setrec2lem1 44803 . . . . . . . . . . . 12 ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹𝑤)
109sseq1i 3997 . . . . . . . . . . 11 (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹𝑤) ⊆ 𝑧)
1110imbi2i 338 . . . . . . . . . 10 ((𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
1211imbi2i 338 . . . . . . . . 9 ((𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
1312albii 1820 . . . . . . . 8 (∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)))
1413imbi1i 352 . . . . . . 7 ((∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ (∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧))
1514albii 1820 . . . . . 6 (∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧) ↔ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧))
1615abbii 2888 . . . . 5 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1716unieqi 4853 . . . 4 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
18 df-setrecs 44794 . . . 4 setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
19 df-setrecs 44794 . . . 4 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2017, 18, 193eqtr4ri 2857 . . 3 setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}))
218, 20eqtri 2846 . 2 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}))
22 setrec2lem2 44804 . 2 Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})
23 setrec2.3 . . 3 (𝜑 → ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
24 setrec2lem1 44803 . . . . . 6 ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹𝑎)
2524sseq1i 3997 . . . . 5 (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹𝑎) ⊆ 𝐶)
2625imbi2i 338 . . . 4 ((𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
2726albii 1820 . . 3 (∀𝑎(𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎𝐶 → (𝐹𝑎) ⊆ 𝐶))
2823, 27sylibr 236 . 2 (𝜑 → ∀𝑎(𝑎𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶))
297, 21, 22, 28setrec2fun 44802 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535   = wceq 1537  ∃!weu 2653  {cab 2801  wnfc 2963  wss 3938   cuni 4840   class class class wbr 5068  cres 5559  cfv 6357  setrecscsetrecs 44793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-setrecs 44794
This theorem is referenced by:  setrec2v  44806
  Copyright terms: Public domain W3C validator