| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2 | Structured version Visualization version GIF version | ||
| Description: This is the second of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs(𝐹) is a subclass of all classes 𝐶 that
are closed
under 𝐹. Taken together, Theorems setrec1 49677 and setrec2v 49682
uniquely determine setrecs(𝐹) to be the minimal class closed
under 𝐹.
We express this by saying that if 𝐹 respects the ⊆ relation and 𝐶 is closed under 𝐹, then 𝐵 ⊆ 𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7793) to the other class. (Contributed by Emmett Weisz, 2-Sep-2021.) |
| Ref | Expression |
|---|---|
| setrec2.1 | ⊢ Ⅎ𝑎𝐹 |
| setrec2.2 | ⊢ 𝐵 = setrecs(𝐹) |
| setrec2.3 | ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
| Ref | Expression |
|---|---|
| setrec2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setrec2.1 | . . 3 ⊢ Ⅎ𝑎𝐹 | |
| 2 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑎𝑥 | |
| 3 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑎𝑢 | |
| 4 | 2, 1, 3 | nfbr 5142 | . . . . 5 ⊢ Ⅎ𝑎 𝑥𝐹𝑢 |
| 5 | 4 | nfeuw 2586 | . . . 4 ⊢ Ⅎ𝑎∃!𝑢 𝑥𝐹𝑢 |
| 6 | 5 | nfab 2897 | . . 3 ⊢ Ⅎ𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢} |
| 7 | 1, 6 | nfres 5936 | . 2 ⊢ Ⅎ𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) |
| 8 | setrec2.2 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
| 9 | setrec2lem1 49679 | . . . . . . . . . . . 12 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹‘𝑤) | |
| 10 | 9 | sseq1i 3966 | . . . . . . . . . . 11 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ 𝑧) |
| 11 | 10 | imbi2i 336 | . . . . . . . . . 10 ⊢ ((𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
| 12 | 11 | imbi2i 336 | . . . . . . . . 9 ⊢ ((𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
| 13 | 12 | albii 1819 | . . . . . . . 8 ⊢ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
| 14 | 13 | imbi1i 349 | . . . . . . 7 ⊢ ((∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
| 15 | 14 | albii 1819 | . . . . . 6 ⊢ (∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
| 16 | 15 | abbii 2796 | . . . . 5 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 17 | 16 | unieqi 4873 | . . . 4 ⊢ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
| 18 | df-setrecs 49670 | . . . 4 ⊢ setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 19 | df-setrecs 49670 | . . . 4 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
| 20 | 17, 18, 19 | 3eqtr4ri 2763 | . . 3 ⊢ setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
| 21 | 8, 20 | eqtri 2752 | . 2 ⊢ 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
| 22 | setrec2lem2 49680 | . 2 ⊢ Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) | |
| 23 | setrec2.3 | . . 3 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) | |
| 24 | setrec2lem1 49679 | . . . . . 6 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹‘𝑎) | |
| 25 | 24 | sseq1i 3966 | . . . . 5 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹‘𝑎) ⊆ 𝐶) |
| 26 | 25 | imbi2i 336 | . . . 4 ⊢ ((𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
| 27 | 26 | albii 1819 | . . 3 ⊢ (∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
| 28 | 23, 27 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶)) |
| 29 | 7, 21, 22, 28 | setrec2fun 49678 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∃!weu 2561 {cab 2707 Ⅎwnfc 2876 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 ↾ cres 5625 ‘cfv 6486 setrecscsetrecs 49669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-setrecs 49670 |
| This theorem is referenced by: setrec2v 49682 setrec2mpt 49683 |
| Copyright terms: Public domain | W3C validator |