![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setrec2 | Structured version Visualization version GIF version |
Description: This is the second of two
fundamental theorems about set recursion from
which all other facts will be derived. It states that the class
setrecs(𝐹) is a subclass of all classes 𝐶 that
are closed
under 𝐹. Taken together, Theorems setrec1 48922 and setrec2v 48927
uniquely determine setrecs(𝐹) to be the minimal class closed
under 𝐹.
We express this by saying that if 𝐹 respects the ⊆ relation and 𝐶 is closed under 𝐹, then 𝐵 ⊆ 𝐶. By substituting strategically constructed classes for 𝐶, we can easily prove many useful properties. Although this theorem cannot show equality between 𝐵 and 𝐶, if we intend to prove equality between 𝐵 and some particular class (such as On), we first apply this theorem, then the relevant induction theorem (such as tfi 7874) to the other class. (Contributed by Emmett Weisz, 2-Sep-2021.) |
Ref | Expression |
---|---|
setrec2.1 | ⊢ Ⅎ𝑎𝐹 |
setrec2.2 | ⊢ 𝐵 = setrecs(𝐹) |
setrec2.3 | ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
Ref | Expression |
---|---|
setrec2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setrec2.1 | . . 3 ⊢ Ⅎ𝑎𝐹 | |
2 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑎𝑥 | |
3 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑎𝑢 | |
4 | 2, 1, 3 | nfbr 5195 | . . . . 5 ⊢ Ⅎ𝑎 𝑥𝐹𝑢 |
5 | 4 | nfeuw 2591 | . . . 4 ⊢ Ⅎ𝑎∃!𝑢 𝑥𝐹𝑢 |
6 | 5 | nfab 2909 | . . 3 ⊢ Ⅎ𝑎{𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢} |
7 | 1, 6 | nfres 6002 | . 2 ⊢ Ⅎ𝑎(𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) |
8 | setrec2.2 | . . 3 ⊢ 𝐵 = setrecs(𝐹) | |
9 | setrec2lem1 48924 | . . . . . . . . . . . 12 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) = (𝐹‘𝑤) | |
10 | 9 | sseq1i 4024 | . . . . . . . . . . 11 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ 𝑧) |
11 | 10 | imbi2i 336 | . . . . . . . . . 10 ⊢ ((𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧) ↔ (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
12 | 11 | imbi2i 336 | . . . . . . . . 9 ⊢ ((𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ (𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
13 | 12 | albii 1816 | . . . . . . . 8 ⊢ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) ↔ ∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧))) |
14 | 13 | imbi1i 349 | . . . . . . 7 ⊢ ((∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ (∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
15 | 14 | albii 1816 | . . . . . 6 ⊢ (∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) ↔ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)) |
16 | 15 | abbii 2807 | . . . . 5 ⊢ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
17 | 16 | unieqi 4924 | . . . 4 ⊢ ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
18 | df-setrecs 48915 | . . . 4 ⊢ setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
19 | df-setrecs 48915 | . . . 4 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
20 | 17, 18, 19 | 3eqtr4ri 2774 | . . 3 ⊢ setrecs(𝐹) = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
21 | 8, 20 | eqtri 2763 | . 2 ⊢ 𝐵 = setrecs((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})) |
22 | setrec2lem2 48925 | . 2 ⊢ Fun (𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢}) | |
23 | setrec2.3 | . . 3 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) | |
24 | setrec2lem1 48924 | . . . . . 6 ⊢ ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) = (𝐹‘𝑎) | |
25 | 24 | sseq1i 4024 | . . . . 5 ⊢ (((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶 ↔ (𝐹‘𝑎) ⊆ 𝐶) |
26 | 25 | imbi2i 336 | . . . 4 ⊢ ((𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ (𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
27 | 26 | albii 1816 | . . 3 ⊢ (∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶) ↔ ∀𝑎(𝑎 ⊆ 𝐶 → (𝐹‘𝑎) ⊆ 𝐶)) |
28 | 23, 27 | sylibr 234 | . 2 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ 𝐶 → ((𝐹 ↾ {𝑥 ∣ ∃!𝑢 𝑥𝐹𝑢})‘𝑎) ⊆ 𝐶)) |
29 | 7, 21, 22, 28 | setrec2fun 48923 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 = wceq 1537 ∃!weu 2566 {cab 2712 Ⅎwnfc 2888 ⊆ wss 3963 ∪ cuni 4912 class class class wbr 5148 ↾ cres 5691 ‘cfv 6563 setrecscsetrecs 48914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-setrecs 48915 |
This theorem is referenced by: setrec2v 48927 setrec2mpt 48928 |
Copyright terms: Public domain | W3C validator |