Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfiund Structured version   Visualization version   GIF version

Theorem nfiund 43536
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019.)
Hypotheses
Ref Expression
nfiund.1 𝑥𝜑
nfiund.2 (𝜑𝑦𝐴)
nfiund.3 (𝜑𝑦𝐵)
Assertion
Ref Expression
nfiund (𝜑𝑦 𝑥𝐴 𝐵)

Proof of Theorem nfiund
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4757 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfv 1957 . . 3 𝑧𝜑
3 nfiund.1 . . . 4 𝑥𝜑
4 nfiund.2 . . . 4 (𝜑𝑦𝐴)
5 nfiund.3 . . . . 5 (𝜑𝑦𝐵)
65nfcrd 2927 . . . 4 (𝜑 → Ⅎ𝑦 𝑧𝐵)
73, 4, 6nfrexd 3187 . . 3 (𝜑 → Ⅎ𝑦𝑥𝐴 𝑧𝐵)
82, 7nfabd 2954 . 2 (𝜑𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
91, 8nfcxfrd 2933 1 (𝜑𝑦 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1827  wcel 2107  {cab 2763  wnfc 2919  wrex 3091   ciun 4755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-iun 4757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator