| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfiund | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019.) Add disjoint variable condition to avoid ax-13 2372. See nfiundg 49775 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfiund.1 | ⊢ Ⅎ𝑥𝜑 |
| nfiund.2 | ⊢ (𝜑 → Ⅎ𝑦𝐴) |
| nfiund.3 | ⊢ (𝜑 → Ⅎ𝑦𝐵) |
| Ref | Expression |
|---|---|
| nfiund | ⊢ (𝜑 → Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4941 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 2 | nfv 1915 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfiund.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | nfiund.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝐴) | |
| 5 | nfiund.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝐵) | |
| 6 | 5 | nfcrd 2888 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦 𝑧 ∈ 𝐵) |
| 7 | 3, 4, 6 | nfrexdw 3278 | . . 3 ⊢ (𝜑 → Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
| 8 | 2, 7 | nfabdw 2916 | . 2 ⊢ (𝜑 → Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵}) |
| 9 | 1, 8 | nfcxfrd 2893 | 1 ⊢ (𝜑 → Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1784 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 ∃wrex 3056 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-iun 4941 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |