Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfiund Structured version   Visualization version   GIF version

Theorem nfiund 46266
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019.) Add disjoint variable condition to avoid ax-13 2372. See nfiundg 46267 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiund.1 𝑥𝜑
nfiund.2 (𝜑𝑦𝐴)
nfiund.3 (𝜑𝑦𝐵)
Assertion
Ref Expression
nfiund (𝜑𝑦 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiund
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4923 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfv 1918 . . 3 𝑧𝜑
3 nfiund.1 . . . 4 𝑥𝜑
4 nfiund.2 . . . 4 (𝜑𝑦𝐴)
5 nfiund.3 . . . . 5 (𝜑𝑦𝐵)
65nfcrd 2895 . . . 4 (𝜑 → Ⅎ𝑦 𝑧𝐵)
73, 4, 6nfrexd 3235 . . 3 (𝜑 → Ⅎ𝑦𝑥𝐴 𝑧𝐵)
82, 7nfabdw 2929 . 2 (𝜑𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
91, 8nfcxfrd 2905 1 (𝜑𝑦 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1787  wcel 2108  {cab 2715  wnfc 2886  wrex 3064   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-iun 4923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator