![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiota | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. Usage of this theorem is discouraged because it depends on ax-13 2365. Use the weaker nfiotaw 6503 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfiota.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfiota | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1798 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfiota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfiotad 6504 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
5 | 4 | mptru 1540 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1534 Ⅎwnf 1777 Ⅎwnfc 2875 ℩cio 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-13 2365 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-v 3465 df-ss 3962 df-sn 4630 df-uni 4909 df-iota 6499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |