Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiota | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker nfiotaw 6377 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfiota.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfiota | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1812 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfiota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfiotad 6378 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
5 | 4 | mptru 1550 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1544 Ⅎwnf 1791 Ⅎwnfc 2887 ℩cio 6371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-13 2373 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3425 df-in 3891 df-ss 3901 df-sn 4559 df-uni 4837 df-iota 6373 |
This theorem is referenced by: nfsumOLD 15306 |
Copyright terms: Public domain | W3C validator |