MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiota Structured version   Visualization version   GIF version

Theorem nfiota 6379
Description: Bound-variable hypothesis builder for the class. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker nfiotaw 6377 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfiota.1 𝑥𝜑
Assertion
Ref Expression
nfiota 𝑥(℩𝑦𝜑)

Proof of Theorem nfiota
StepHypRef Expression
1 nftru 1812 . . 3 𝑦
2 nfiota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotad 6378 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1550 1 𝑥(℩𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1544  wnf 1791  wnfc 2887  cio 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-13 2373  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3425  df-in 3891  df-ss 3901  df-sn 4559  df-uni 4837  df-iota 6373
This theorem is referenced by:  nfsumOLD  15306
  Copyright terms: Public domain W3C validator