MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiota Structured version   Visualization version   GIF version

Theorem nfiota 6397
Description: Bound-variable hypothesis builder for the class. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfiotaw 6395 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfiota.1 𝑥𝜑
Assertion
Ref Expression
nfiota 𝑥(℩𝑦𝜑)

Proof of Theorem nfiota
StepHypRef Expression
1 nftru 1807 . . 3 𝑦
2 nfiota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotad 6396 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1546 1 𝑥(℩𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1786  wnfc 2887  cio 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904  df-sn 4562  df-uni 4840  df-iota 6391
This theorem is referenced by:  nfsumOLD  15403
  Copyright terms: Public domain W3C validator