MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiota Structured version   Visualization version   GIF version

Theorem nfiota 6448
Description: Bound-variable hypothesis builder for the class. Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker nfiotaw 6446 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfiota.1 𝑥𝜑
Assertion
Ref Expression
nfiota 𝑥(℩𝑦𝜑)

Proof of Theorem nfiota
StepHypRef Expression
1 nftru 1805 . . 3 𝑦
2 nfiota.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotad 6447 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1548 1 𝑥(℩𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wnf 1784  wnfc 2880  cio 6440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-v 3439  df-ss 3915  df-sn 4576  df-uni 4859  df-iota 6442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator