![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiota | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. Usage of this theorem is discouraged because it depends on ax-13 2366. Use the weaker nfiotaw 6498 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfiota.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfiota | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1799 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfiota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfiotad 6499 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
5 | 4 | mptru 1541 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1535 Ⅎwnf 1778 Ⅎwnfc 2878 ℩cio 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-13 2366 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-v 3471 df-in 3951 df-ss 3961 df-sn 4625 df-uni 4904 df-iota 6494 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |