| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiota | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker nfiotaw 6518 when possible. (Contributed by NM, 23-Aug-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfiota.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfiota | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfiota.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfiotad 6519 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
| 5 | 4 | mptru 1547 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2890 ℩cio 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-v 3482 df-ss 3968 df-sn 4627 df-uni 4908 df-iota 6514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |