MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotaw Structured version   Visualization version   GIF version

Theorem nfiotaw 6302
Description: Bound-variable hypothesis builder for the class. Version of nfiota 6304 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 23-Aug-2011.) (Revised by Gino Giotto, 26-Jan-2024.)
Hypothesis
Ref Expression
nfiotaw.1 𝑥𝜑
Assertion
Ref Expression
nfiotaw 𝑥(℩𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1811 . . 3 𝑦
2 nfiotaw.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotadw 6301 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1549 1 𝑥(℩𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1543  wnf 1790  wnfc 2880  cio 6296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ral 3059  df-rex 3060  df-v 3401  df-in 3851  df-ss 3861  df-sn 4518  df-uni 4798  df-iota 6298
This theorem is referenced by:  csbiota  6333  nffv  6687  nfsum1  15142  nfsum  15143  nfcprod1  15359  nfcprod  15360  nfafv2  44273
  Copyright terms: Public domain W3C validator