| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiotaw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. Version of nfiota 6470 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2370. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfiotadw 6467 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
| 5 | 4 | mptru 1547 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2876 ℩cio 6462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3449 df-ss 3931 df-sn 4590 df-uni 4872 df-iota 6464 |
| This theorem is referenced by: csbiota 6504 nffv 6868 nfsum1 15656 nfsum 15657 nfcprod1 15874 nfcprod 15875 nfafv2 47219 |
| Copyright terms: Public domain | W3C validator |