Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiotaw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. Version of nfiota 6304 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 23-Aug-2011.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1811 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfiotadw 6301 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
5 | 4 | mptru 1549 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1543 Ⅎwnf 1790 Ⅎwnfc 2880 ℩cio 6296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ral 3059 df-rex 3060 df-v 3401 df-in 3851 df-ss 3861 df-sn 4518 df-uni 4798 df-iota 6298 |
This theorem is referenced by: csbiota 6333 nffv 6687 nfsum1 15142 nfsum 15143 nfcprod1 15359 nfcprod 15360 nfafv2 44273 |
Copyright terms: Public domain | W3C validator |