![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiotaw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. Version of nfiota 6500 with a disjoint variable condition, which does not require ax-13 2369. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2369. (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfiotadw 6497 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
5 | 4 | mptru 1546 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1783 Ⅎwnfc 2881 ℩cio 6492 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-v 3474 df-in 3954 df-ss 3964 df-sn 4628 df-uni 4908 df-iota 6494 |
This theorem is referenced by: csbiota 6535 nffv 6900 nfsum1 15640 nfsum 15641 nfcprod1 15858 nfcprod 15859 nfafv2 46224 |
Copyright terms: Public domain | W3C validator |