MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotaw Structured version   Visualization version   GIF version

Theorem nfiotaw 6488
Description: Bound-variable hypothesis builder for the class. Version of nfiota 6490 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2376. (Revised by GG, 26-Jan-2024.)
Hypothesis
Ref Expression
nfiotaw.1 𝑥𝜑
Assertion
Ref Expression
nfiotaw 𝑥(℩𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1804 . . 3 𝑦
2 nfiotaw.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotadw 6487 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1547 1 𝑥(℩𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnf 1783  wnfc 2883  cio 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-v 3461  df-ss 3943  df-sn 4602  df-uni 4884  df-iota 6484
This theorem is referenced by:  csbiota  6524  nffv  6886  nfsum1  15706  nfsum  15707  nfcprod1  15924  nfcprod  15925  nfafv2  47247
  Copyright terms: Public domain W3C validator