MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotaw Structured version   Visualization version   GIF version

Theorem nfiotaw 6500
Description: Bound-variable hypothesis builder for the class. Version of nfiota 6502 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2372. (Revised by Gino Giotto, 26-Jan-2024.)
Hypothesis
Ref Expression
nfiotaw.1 𝑥𝜑
Assertion
Ref Expression
nfiotaw 𝑥(℩𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1807 . . 3 𝑦
2 nfiotaw.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotadw 6499 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1549 1 𝑥(℩𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1543  wnf 1786  wnfc 2884  cio 6494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-v 3477  df-in 3956  df-ss 3966  df-sn 4630  df-uni 4910  df-iota 6496
This theorem is referenced by:  csbiota  6537  nffv  6902  nfsum1  15636  nfsum  15637  nfcprod1  15854  nfcprod  15855  nfafv2  45926
  Copyright terms: Public domain W3C validator