MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotaw Structured version   Visualization version   GIF version

Theorem nfiotaw 6392
Description: Bound-variable hypothesis builder for the class. Version of nfiota 6394 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 23-Aug-2011.) (Revised by Gino Giotto, 26-Jan-2024.)
Hypothesis
Ref Expression
nfiotaw.1 𝑥𝜑
Assertion
Ref Expression
nfiotaw 𝑥(℩𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1810 . . 3 𝑦
2 nfiotaw.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotadw 6391 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1548 1 𝑥(℩𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wnf 1789  wnfc 2888  cio 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-v 3432  df-in 3898  df-ss 3908  df-sn 4567  df-uni 4845  df-iota 6388
This theorem is referenced by:  csbiota  6423  nffv  6778  nfsum1  15382  nfsum  15383  nfcprod1  15601  nfcprod  15602  nfafv2  44661
  Copyright terms: Public domain W3C validator