Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiotaw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the ℩ class. Version of nfiota 6394 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by NM, 23-Aug-2011.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1810 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
4 | 1, 3 | nfiotadw 6391 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1542 Ⅎwnf 1789 Ⅎwnfc 2888 ℩cio 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-v 3432 df-in 3898 df-ss 3908 df-sn 4567 df-uni 4845 df-iota 6388 |
This theorem is referenced by: csbiota 6423 nffv 6778 nfsum1 15382 nfsum 15383 nfcprod1 15601 nfcprod 15602 nfafv2 44661 |
Copyright terms: Public domain | W3C validator |