MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotaw Structured version   Visualization version   GIF version

Theorem nfiotaw 6529
Description: Bound-variable hypothesis builder for the class. Version of nfiota 6531 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.)
Hypothesis
Ref Expression
nfiotaw.1 𝑥𝜑
Assertion
Ref Expression
nfiotaw 𝑥(℩𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem nfiotaw
StepHypRef Expression
1 nftru 1802 . . 3 𝑦
2 nfiotaw.1 . . . 4 𝑥𝜑
32a1i 11 . . 3 (⊤ → Ⅎ𝑥𝜑)
41, 3nfiotadw 6528 . 2 (⊤ → 𝑥(℩𝑦𝜑))
54mptru 1544 1 𝑥(℩𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wnf 1781  wnfc 2893  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-v 3490  df-ss 3993  df-sn 4649  df-uni 4932  df-iota 6525
This theorem is referenced by:  csbiota  6566  nffv  6930  nfsum1  15738  nfsum  15739  nfcprod1  15956  nfcprod  15957  nfafv2  47133
  Copyright terms: Public domain W3C validator