| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiotaw | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the ℩ class. Version of nfiota 6451 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 23-Aug-2011.) Avoid ax-13 2374. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfiotaw.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfiotaw | ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 2 | nfiotaw.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 4 | 1, 3 | nfiotadw 6448 | . 2 ⊢ (⊤ → Ⅎ𝑥(℩𝑦𝜑)) |
| 5 | 4 | mptru 1548 | 1 ⊢ Ⅎ𝑥(℩𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 Ⅎwnfc 2880 ℩cio 6443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-v 3439 df-ss 3915 df-sn 4578 df-uni 4861 df-iota 6445 |
| This theorem is referenced by: csbiota 6482 nffv 6841 nfsum1 15604 nfsum 15605 nfcprod1 15822 nfcprod 15823 nfafv2 47380 |
| Copyright terms: Public domain | W3C validator |