| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfopabd | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| nfopabd.1 | ⊢ Ⅎ𝑥𝜑 |
| nfopabd.2 | ⊢ Ⅎ𝑦𝜑 |
| nfopabd.4 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
| Ref | Expression |
|---|---|
| nfopabd | ⊢ (𝜑 → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 5173 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 2 | nfv 1914 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
| 3 | nfopabd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | nfopabd.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 5 | nfvd 1915 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧 𝑤 = 〈𝑥, 𝑦〉) | |
| 6 | nfopabd.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
| 7 | 5, 6 | nfand 1897 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
| 8 | 4, 7 | nfexd 2328 | . . . 4 ⊢ (𝜑 → Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
| 9 | 3, 8 | nfexd 2328 | . . 3 ⊢ (𝜑 → Ⅎ𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
| 10 | 2, 9 | nfabdw 2914 | . 2 ⊢ (𝜑 → Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)}) |
| 11 | 1, 10 | nfcxfrd 2891 | 1 ⊢ (𝜑 → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 {cab 2708 Ⅎwnfc 2877 〈cop 4598 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-opab 5173 |
| This theorem is referenced by: nfopab 5179 nfttrcld 9670 |
| Copyright terms: Public domain | W3C validator |