![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfopabd | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
nfopabd.1 | ⊢ Ⅎ𝑥𝜑 |
nfopabd.2 | ⊢ Ⅎ𝑦𝜑 |
nfopabd.4 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
Ref | Expression |
---|---|
nfopabd | ⊢ (𝜑 → Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-opab 5211 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} | |
2 | nfv 1916 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
3 | nfopabd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | nfopabd.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
5 | nfvd 1917 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧 𝑤 = ⟨𝑥, 𝑦⟩) | |
6 | nfopabd.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
7 | 5, 6 | nfand 1899 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) |
8 | 4, 7 | nfexd 2321 | . . . 4 ⊢ (𝜑 → Ⅎ𝑧∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) |
9 | 3, 8 | nfexd 2321 | . . 3 ⊢ (𝜑 → Ⅎ𝑧∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)) |
10 | 2, 9 | nfabdw 2925 | . 2 ⊢ (𝜑 → Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) |
11 | 1, 10 | nfcxfrd 2901 | 1 ⊢ (𝜑 → Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 Ⅎwnf 1784 {cab 2708 Ⅎwnfc 2882 ⟨cop 4634 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-opab 5211 |
This theorem is referenced by: nfopab 5217 nfttrcld 9708 |
Copyright terms: Public domain | W3C validator |