| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfopabd | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| nfopabd.1 | ⊢ Ⅎ𝑥𝜑 |
| nfopabd.2 | ⊢ Ⅎ𝑦𝜑 |
| nfopabd.4 | ⊢ (𝜑 → Ⅎ𝑧𝜓) |
| Ref | Expression |
|---|---|
| nfopabd | ⊢ (𝜑 → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-opab 5152 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 2 | nfv 1915 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
| 3 | nfopabd.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 4 | nfopabd.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 5 | nfvd 1916 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧 𝑤 = 〈𝑥, 𝑦〉) | |
| 6 | nfopabd.4 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑧𝜓) | |
| 7 | 5, 6 | nfand 1898 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑧(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
| 8 | 4, 7 | nfexd 2330 | . . . 4 ⊢ (𝜑 → Ⅎ𝑧∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
| 9 | 3, 8 | nfexd 2330 | . . 3 ⊢ (𝜑 → Ⅎ𝑧∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)) |
| 10 | 2, 9 | nfabdw 2916 | . 2 ⊢ (𝜑 → Ⅎ𝑧{𝑤 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜓)}) |
| 11 | 1, 10 | nfcxfrd 2893 | 1 ⊢ (𝜑 → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 Ⅎwnf 1784 {cab 2709 Ⅎwnfc 2879 〈cop 4579 {copab 5151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-opab 5152 |
| This theorem is referenced by: nfopab 5158 nfttrcld 9600 |
| Copyright terms: Public domain | W3C validator |