MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopabd Structured version   Visualization version   GIF version

Theorem nfopabd 5138
Description: Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024.)
Hypotheses
Ref Expression
nfopabd.1 𝑥𝜑
nfopabd.2 𝑦𝜑
nfopabd.4 (𝜑 → Ⅎ𝑧𝜓)
Assertion
Ref Expression
nfopabd (𝜑𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜓})
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem nfopabd
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5133 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
2 nfv 1918 . . 3 𝑤𝜑
3 nfopabd.1 . . . 4 𝑥𝜑
4 nfopabd.2 . . . . 5 𝑦𝜑
5 nfvd 1919 . . . . . 6 (𝜑 → Ⅎ𝑧 𝑤 = ⟨𝑥, 𝑦⟩)
6 nfopabd.4 . . . . . 6 (𝜑 → Ⅎ𝑧𝜓)
75, 6nfand 1901 . . . . 5 (𝜑 → Ⅎ𝑧(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
84, 7nfexd 2327 . . . 4 (𝜑 → Ⅎ𝑧𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
93, 8nfexd 2327 . . 3 (𝜑 → Ⅎ𝑧𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))
102, 9nfabdw 2929 . 2 (𝜑𝑧{𝑤 ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
111, 10nfcxfrd 2905 1 (𝜑𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wnf 1787  {cab 2715  wnfc 2886  cop 4564  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-opab 5133
This theorem is referenced by:  nfopab  5139  nfttrcld  33696
  Copyright terms: Public domain W3C validator