MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab Structured version   Visualization version   GIF version

Theorem nfopab 5139
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.)
Hypothesis
Ref Expression
nfopab.1 𝑧𝜑
Assertion
Ref Expression
nfopab 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfopab
StepHypRef Expression
1 nftru 1808 . . 3 𝑥
2 nftru 1808 . . 3 𝑦
3 nfopab.1 . . . 4 𝑧𝜑
43a1i 11 . . 3 (⊤ → Ⅎ𝑧𝜑)
51, 2, 4nfopabd 5138 . 2 (⊤ → 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑})
65mptru 1546 1 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1787  wnfc 2886  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-opab 5133
This theorem is referenced by:  nfmpt  5177  csbopab  5461  csbopabgALT  5462  nfxp  5613  nfco  5763  nfcnv  5776  nfofr  7518  fineqvrep  32964
  Copyright terms: Public domain W3C validator