Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfopab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfopab | ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | nftru 1807 | . . 3 ⊢ Ⅎ𝑦⊤ | |
3 | nfopab.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
5 | 1, 2, 4 | nfopabd 5142 | . 2 ⊢ (⊤ → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}) |
6 | 5 | mptru 1546 | 1 ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1540 Ⅎwnf 1786 Ⅎwnfc 2887 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-opab 5137 |
This theorem is referenced by: nfmpt 5181 csbopab 5468 csbopabgALT 5469 nfxp 5622 nfco 5774 nfcnv 5787 nfofr 7540 fineqvrep 33064 |
Copyright terms: Public domain | W3C validator |