![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfopab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfopab | ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1801 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | nftru 1801 | . . 3 ⊢ Ⅎ𝑦⊤ | |
3 | nfopab.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
5 | 1, 2, 4 | nfopabd 5216 | . 2 ⊢ (⊤ → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}) |
6 | 5 | mptru 1544 | 1 ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1538 Ⅎwnf 1780 Ⅎwnfc 2888 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-opab 5211 |
This theorem is referenced by: nfmpt 5255 csbopab 5565 csbopabgALT 5566 nfxp 5722 nfco 5879 nfcnv 5892 nfofr 7704 fineqvrep 35088 |
Copyright terms: Public domain | W3C validator |