MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab Structured version   Visualization version   GIF version

Theorem nfopab 5217
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.)
Hypothesis
Ref Expression
nfopab.1 𝑧𝜑
Assertion
Ref Expression
nfopab 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfopab
StepHypRef Expression
1 nftru 1801 . . 3 𝑥
2 nftru 1801 . . 3 𝑦
3 nfopab.1 . . . 4 𝑧𝜑
43a1i 11 . . 3 (⊤ → Ⅎ𝑧𝜑)
51, 2, 4nfopabd 5216 . 2 (⊤ → 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑})
65mptru 1544 1 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wnf 1780  wnfc 2888  {copab 5210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-opab 5211
This theorem is referenced by:  nfmpt  5255  csbopab  5565  csbopabgALT  5566  nfxp  5722  nfco  5879  nfcnv  5892  nfofr  7704  fineqvrep  35088
  Copyright terms: Public domain W3C validator