| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfopab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfopab | ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1805 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nftru 1805 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfopab.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
| 5 | 1, 2, 4 | nfopabd 5154 | . 2 ⊢ (⊤ → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 6 | 5 | mptru 1548 | 1 ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1542 Ⅎwnf 1784 Ⅎwnfc 2879 {copab 5148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-opab 5149 |
| This theorem is referenced by: nfmpt 5184 csbopab 5490 csbopabgALT 5491 nfxp 5644 nfco 5800 nfcnv 5813 nfofr 7612 fineqvrep 35129 |
| Copyright terms: Public domain | W3C validator |