![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfopab | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
Ref | Expression |
---|---|
nfopab | ⊢ Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1807 | . . 3 ⊢ Ⅎ𝑥⊤ | |
2 | nftru 1807 | . . 3 ⊢ Ⅎ𝑦⊤ | |
3 | nfopab.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
5 | 1, 2, 4 | nfopabd 5217 | . 2 ⊢ (⊤ → Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}) |
6 | 5 | mptru 1549 | 1 ⊢ Ⅎ𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1543 Ⅎwnf 1786 Ⅎwnfc 2884 {copab 5211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-opab 5212 |
This theorem is referenced by: nfmpt 5256 csbopab 5556 csbopabgALT 5557 nfxp 5710 nfco 5866 nfcnv 5879 nfofr 7677 fineqvrep 34126 |
Copyright terms: Public domain | W3C validator |