| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfopab | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| nfopab.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfopab | ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1804 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nftru 1804 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 3 | nfopab.1 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑧𝜑) |
| 5 | 1, 2, 4 | nfopabd 5178 | . 2 ⊢ (⊤ → Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 6 | 5 | mptru 1547 | 1 ⊢ Ⅎ𝑧{〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnf 1783 Ⅎwnfc 2877 {copab 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-opab 5173 |
| This theorem is referenced by: nfmpt 5208 csbopab 5518 csbopabgALT 5519 nfxp 5674 nfco 5832 nfcnv 5845 nfofr 7663 fineqvrep 35092 |
| Copyright terms: Public domain | W3C validator |