MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab Structured version   Visualization version   GIF version

Theorem nfopab 5143
Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999.) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011.) (Revised by Scott Fenton, 26-Oct-2024.)
Hypothesis
Ref Expression
nfopab.1 𝑧𝜑
Assertion
Ref Expression
nfopab 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfopab
StepHypRef Expression
1 nftru 1807 . . 3 𝑥
2 nftru 1807 . . 3 𝑦
3 nfopab.1 . . . 4 𝑧𝜑
43a1i 11 . . 3 (⊤ → Ⅎ𝑧𝜑)
51, 2, 4nfopabd 5142 . 2 (⊤ → 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑})
65mptru 1546 1 𝑧{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wtru 1540  wnf 1786  wnfc 2887  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-opab 5137
This theorem is referenced by:  nfmpt  5181  csbopab  5468  csbopabgALT  5469  nfxp  5622  nfco  5774  nfcnv  5787  nfofr  7540  fineqvrep  33064
  Copyright terms: Public domain W3C validator