MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfunid Structured version   Visualization version   GIF version

Theorem nfunid 4886
Description: Deduction version of nfuni 4887. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfunid (𝜑𝑥 𝐴)

Proof of Theorem nfunid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 4882 . 2 𝐴 = {𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
2 nfv 1913 . . 3 𝑦𝜑
3 nfv 1913 . . . 4 𝑧𝜑
4 nfunid.3 . . . 4 (𝜑𝑥𝐴)
5 nfvd 1914 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝑧)
63, 4, 5nfrexdw 3288 . . 3 (𝜑 → Ⅎ𝑥𝑧𝐴 𝑦𝑧)
72, 6nfabdw 2919 . 2 (𝜑𝑥{𝑦 ∣ ∃𝑧𝐴 𝑦𝑧})
81, 7nfcxfrd 2896 1 (𝜑𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  {cab 2712  wnfc 2882  wrex 3059   cuni 4880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-uni 4881
This theorem is referenced by:  nfuni  4887  dfnfc2  4902  nfiotadw  6483  nfiotad  6485
  Copyright terms: Public domain W3C validator