Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfunid | Structured version Visualization version GIF version |
Description: Deduction version of nfuni 4856. (Contributed by NM, 18-Feb-2013.) |
Ref | Expression |
---|---|
nfunid.3 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfunid | ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 4851 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
2 | nfv 1916 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
4 | nfunid.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
5 | nfvd 1917 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝑧) | |
6 | 3, 4, 5 | nfrexdw 3289 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧) |
7 | 2, 6 | nfabdw 2927 | . 2 ⊢ (𝜑 → Ⅎ𝑥{𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧}) |
8 | 1, 7 | nfcxfrd 2903 | 1 ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 {cab 2713 Ⅎwnfc 2884 ∃wrex 3070 ∪ cuni 4849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-uni 4850 |
This theorem is referenced by: nfuni 4856 dfnfc2 4874 nfiotadw 6420 nfiotad 6422 |
Copyright terms: Public domain | W3C validator |