MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfunid Structured version   Visualization version   GIF version

Theorem nfunid 4860
Description: Deduction version of nfuni 4861. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfunid (𝜑𝑥 𝐴)

Proof of Theorem nfunid
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 4856 . 2 𝐴 = {𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
2 nfv 1915 . . 3 𝑦𝜑
3 nfv 1915 . . . 4 𝑧𝜑
4 nfunid.3 . . . 4 (𝜑𝑥𝐴)
5 nfvd 1916 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝑧)
63, 4, 5nfrexdw 3278 . . 3 (𝜑 → Ⅎ𝑥𝑧𝐴 𝑦𝑧)
72, 6nfabdw 2916 . 2 (𝜑𝑥{𝑦 ∣ ∃𝑧𝐴 𝑦𝑧})
81, 7nfcxfrd 2893 1 (𝜑𝑥 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  {cab 2709  wnfc 2879  wrex 3056   cuni 4854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-uni 4855
This theorem is referenced by:  nfuni  4861  dfnfc2  4876  nfiotadw  6435  nfiotad  6437
  Copyright terms: Public domain W3C validator