MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankidb Structured version   Visualization version   GIF version

Theorem rankidb 9229
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankidb (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))

Proof of Theorem rankidb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9222 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2 nfcv 2977 . . . . . 6 𝑥𝑅1
3 nfrab1 3384 . . . . . . . 8 𝑥{𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
43nfint 4886 . . . . . . 7 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
54nfsuc 6262 . . . . . 6 𝑥 suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
62, 5nffv 6680 . . . . 5 𝑥(𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
76nfel2 2996 . . . 4 𝑥 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
8 suceq 6256 . . . . . 6 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc 𝑥 = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
98fveq2d 6674 . . . . 5 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝑅1‘suc 𝑥) = (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
109eleq2d 2898 . . . 4 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})))
117, 10onminsb 7514 . . 3 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
121, 11sylbi 219 . 2 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
13 rankvalb 9226 . . . 4 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
14 suceq 6256 . . . 4 ((rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc (rank‘𝐴) = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
1513, 14syl 17 . . 3 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
1615fveq2d 6674 . 2 (𝐴 (𝑅1 “ On) → (𝑅1‘suc (rank‘𝐴)) = (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
1712, 16eleqtrrd 2916 1 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wrex 3139  {crab 3142   cuni 4838   cint 4876  cima 5558  Oncon0 6191  suc csuc 6193  cfv 6355  𝑅1cr1 9191  rankcrnk 9192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-r1 9193  df-rank 9194
This theorem is referenced by:  rankdmr1  9230  rankr1ag  9231  sswf  9237  uniwf  9248  rankonidlem  9257  rankid  9262  dfac12lem2  9570  aomclem4  39677
  Copyright terms: Public domain W3C validator