MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankidb Structured version   Visualization version   GIF version

Theorem rankidb 9558
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.)
Assertion
Ref Expression
rankidb (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))

Proof of Theorem rankidb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rankwflemb 9551 . . 3 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2 nfcv 2907 . . . . . 6 𝑥𝑅1
3 nfrab1 3317 . . . . . . . 8 𝑥{𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
43nfint 4889 . . . . . . 7 𝑥 {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
54nfsuc 6337 . . . . . 6 𝑥 suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}
62, 5nffv 6784 . . . . 5 𝑥(𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
76nfel2 2925 . . . 4 𝑥 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
8 suceq 6331 . . . . . 6 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc 𝑥 = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
98fveq2d 6778 . . . . 5 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝑅1‘suc 𝑥) = (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
109eleq2d 2824 . . . 4 (𝑥 = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})))
117, 10onminsb 7644 . . 3 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
121, 11sylbi 216 . 2 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
13 rankvalb 9555 . . . 4 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
14 suceq 6331 . . . 4 ((rank‘𝐴) = {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc (rank‘𝐴) = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
1513, 14syl 17 . . 3 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) = suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})
1615fveq2d 6778 . 2 (𝐴 (𝑅1 “ On) → (𝑅1‘suc (rank‘𝐴)) = (𝑅1‘suc {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))
1712, 16eleqtrrd 2842 1 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  {crab 3068   cuni 4839   cint 4879  cima 5592  Oncon0 6266  suc csuc 6268  cfv 6433  𝑅1cr1 9520  rankcrnk 9521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523
This theorem is referenced by:  rankdmr1  9559  rankr1ag  9560  sswf  9566  uniwf  9577  rankonidlem  9586  rankid  9591  dfac12lem2  9900  aomclem4  40882
  Copyright terms: Public domain W3C validator