![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankidb | Structured version Visualization version GIF version |
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
Ref | Expression |
---|---|
rankidb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankwflemb 9016 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
2 | nfcv 2933 | . . . . . 6 ⊢ Ⅎ𝑥𝑅1 | |
3 | nfrab1 3325 | . . . . . . . 8 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} | |
4 | 3 | nfint 4759 | . . . . . . 7 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} |
5 | 4 | nfsuc 6100 | . . . . . 6 ⊢ Ⅎ𝑥 suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} |
6 | 2, 5 | nffv 6509 | . . . . 5 ⊢ Ⅎ𝑥(𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
7 | 6 | nfel2 2949 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
8 | suceq 6094 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc 𝑥 = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
9 | 8 | fveq2d 6503 | . . . . 5 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝑅1‘suc 𝑥) = (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
10 | 9 | eleq2d 2852 | . . . 4 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))) |
11 | 7, 10 | onminsb 7330 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
12 | 1, 11 | sylbi 209 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
13 | rankvalb 9020 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
14 | suceq 6094 | . . . 4 ⊢ ((rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc (rank‘𝐴) = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
16 | 15 | fveq2d 6503 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑅1‘suc (rank‘𝐴)) = (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
17 | 12, 16 | eleqtrrd 2870 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 ∃wrex 3090 {crab 3093 ∪ cuni 4712 ∩ cint 4749 “ cima 5410 Oncon0 6029 suc csuc 6031 ‘cfv 6188 𝑅1cr1 8985 rankcrnk 8986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-r1 8987 df-rank 8988 |
This theorem is referenced by: rankdmr1 9024 rankr1ag 9025 sswf 9031 uniwf 9042 rankonidlem 9051 rankid 9056 dfac12lem2 9364 aomclem4 39050 |
Copyright terms: Public domain | W3C validator |