![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankidb | Structured version Visualization version GIF version |
Description: Identity law for the rank function. (Contributed by NM, 3-Oct-2003.) (Revised by Mario Carneiro, 22-Mar-2013.) |
Ref | Expression |
---|---|
rankidb | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankwflemb 9862 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
2 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑥𝑅1 | |
3 | nfrab1 3464 | . . . . . . . 8 ⊢ Ⅎ𝑥{𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} | |
4 | 3 | nfint 4980 | . . . . . . 7 ⊢ Ⅎ𝑥∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} |
5 | 4 | nfsuc 6467 | . . . . . 6 ⊢ Ⅎ𝑥 suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} |
6 | 2, 5 | nffv 6930 | . . . . 5 ⊢ Ⅎ𝑥(𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
7 | 6 | nfel2 2927 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
8 | suceq 6461 | . . . . . 6 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc 𝑥 = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
9 | 8 | fveq2d 6924 | . . . . 5 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝑅1‘suc 𝑥) = (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
10 | 9 | eleq2d 2830 | . . . 4 ⊢ (𝑥 = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}))) |
11 | 7, 10 | onminsb 7830 | . . 3 ⊢ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥) → 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
12 | 1, 11 | sylbi 217 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
13 | rankvalb 9866 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
14 | suceq 6461 | . . . 4 ⊢ ((rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)} → suc (rank‘𝐴) = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) = suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)}) |
16 | 15 | fveq2d 6924 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑅1‘suc (rank‘𝐴)) = (𝑅1‘suc ∩ {𝑥 ∈ On ∣ 𝐴 ∈ (𝑅1‘suc 𝑥)})) |
17 | 12, 16 | eleqtrrd 2847 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 ∪ cuni 4931 ∩ cint 4970 “ cima 5703 Oncon0 6395 suc csuc 6397 ‘cfv 6573 𝑅1cr1 9831 rankcrnk 9832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-r1 9833 df-rank 9834 |
This theorem is referenced by: rankdmr1 9870 rankr1ag 9871 sswf 9877 uniwf 9888 rankonidlem 9897 rankid 9902 dfac12lem2 10214 aomclem4 43014 |
Copyright terms: Public domain | W3C validator |