MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrringOLD Structured version   Visualization version   GIF version

Theorem nzrringOLD 20534
Description: Obsolete version of nzrring 20533 as of 23-Feb-2025. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nzrringOLD (𝑅 ∈ NzRing → 𝑅 ∈ Ring)

Proof of Theorem nzrringOLD
StepHypRef Expression
1 eqid 2735 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2735 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 20531 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
43simplbi 497 1 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2938  cfv 6563  0gc0g 17486  1rcur 20199  Ringcrg 20251  NzRingcnzr 20529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-nzr 20530
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator