MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrringOLD Structured version   Visualization version   GIF version

Theorem nzrringOLD 20432
Description: Obsolete version of nzrring 20431 as of 23-Feb-2025. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nzrringOLD (𝑅 ∈ NzRing → 𝑅 ∈ Ring)

Proof of Theorem nzrringOLD
StepHypRef Expression
1 eqid 2731 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2731 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 20429 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
43simplbi 497 1 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wne 2928  cfv 6481  0gc0g 17343  1rcur 20099  Ringcrg 20151  NzRingcnzr 20427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489  df-nzr 20428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator