MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nzrringOLD Structured version   Visualization version   GIF version

Theorem nzrringOLD 20482
Description: Obsolete version of nzrring 20481 as of 23-Feb-2025. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nzrringOLD (𝑅 ∈ NzRing → 𝑅 ∈ Ring)

Proof of Theorem nzrringOLD
StepHypRef Expression
1 eqid 2736 . . 3 (1r𝑅) = (1r𝑅)
2 eqid 2736 . . 3 (0g𝑅) = (0g𝑅)
31, 2isnzr 20479 . 2 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
43simplbi 497 1 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2933  cfv 6536  0gc0g 17458  1rcur 20146  Ringcrg 20198  NzRingcnzr 20477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-nzr 20478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator