![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnzr2 | Structured version Visualization version GIF version |
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr2.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnzr2 | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2732 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20405 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | isnzr2.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 4, 1 | ringidcl 20154 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
6 | 5 | adantr 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (1r‘𝑅) ∈ 𝐵) |
7 | 4, 2 | ring0cl 20155 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
8 | 7 | adantr 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (0g‘𝑅) ∈ 𝐵) |
9 | simpr 485 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (1r‘𝑅) ≠ (0g‘𝑅)) | |
10 | df-ne 2941 | . . . . . . . . . 10 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
11 | neeq1 3003 | . . . . . . . . . 10 ⊢ (𝑥 = (1r‘𝑅) → (𝑥 ≠ 𝑦 ↔ (1r‘𝑅) ≠ 𝑦)) | |
12 | 10, 11 | bitr3id 284 | . . . . . . . . 9 ⊢ (𝑥 = (1r‘𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r‘𝑅) ≠ 𝑦)) |
13 | neeq2 3004 | . . . . . . . . 9 ⊢ (𝑦 = (0g‘𝑅) → ((1r‘𝑅) ≠ 𝑦 ↔ (1r‘𝑅) ≠ (0g‘𝑅))) | |
14 | 12, 13 | rspc2ev 3624 | . . . . . . . 8 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵 ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
15 | 6, 8, 9, 14 | syl3anc 1371 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
16 | 15 | ex 413 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) |
17 | 4, 1, 2 | ring1eq0 20186 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
18 | 17 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
19 | 18 | necon3bd 2954 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑥 = 𝑦 → (1r‘𝑅) ≠ (0g‘𝑅))) |
20 | 19 | rexlimdvva 3211 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 → (1r‘𝑅) ≠ (0g‘𝑅))) |
21 | 16, 20 | impbid 211 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) |
22 | 4 | fvexi 6905 | . . . . . 6 ⊢ 𝐵 ∈ V |
23 | 1sdom 9250 | . . . . . 6 ⊢ (𝐵 ∈ V → (1o ≺ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) | |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (1o ≺ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
25 | 21, 24 | bitr4di 288 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ 1o ≺ 𝐵)) |
26 | 1onn 8641 | . . . . . 6 ⊢ 1o ∈ ω | |
27 | sucdom 9237 | . . . . . 6 ⊢ (1o ∈ ω → (1o ≺ 𝐵 ↔ suc 1o ≼ 𝐵)) | |
28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (1o ≺ 𝐵 ↔ suc 1o ≼ 𝐵) |
29 | df-2o 8469 | . . . . . 6 ⊢ 2o = suc 1o | |
30 | 29 | breq1i 5155 | . . . . 5 ⊢ (2o ≼ 𝐵 ↔ suc 1o ≼ 𝐵) |
31 | 28, 30 | bitr4i 277 | . . . 4 ⊢ (1o ≺ 𝐵 ↔ 2o ≼ 𝐵) |
32 | 25, 31 | bitrdi 286 | . . 3 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ 2o ≼ 𝐵)) |
33 | 32 | pm5.32i 575 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
34 | 3, 33 | bitri 274 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∃wrex 3070 Vcvv 3474 class class class wbr 5148 suc csuc 6366 ‘cfv 6543 ωcom 7857 1oc1o 8461 2oc2o 8462 ≼ cdom 8939 ≺ csdm 8940 Basecbs 17148 0gc0g 17389 1rcur 20075 Ringcrg 20127 NzRingcnzr 20403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-nzr 20404 |
This theorem is referenced by: opprnzr 20411 znfld 21335 znidomb 21336 |
Copyright terms: Public domain | W3C validator |