| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnzr2 | Structured version Visualization version GIF version | ||
| Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| isnzr2.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| isnzr2 | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 3 | 1, 2 | isnzr 20399 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
| 4 | isnzr2.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 4, 1 | ringidcl 20150 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (1r‘𝑅) ∈ 𝐵) |
| 7 | 4, 2 | ring0cl 20152 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (0g‘𝑅) ∈ 𝐵) |
| 9 | simpr 484 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (1r‘𝑅) ≠ (0g‘𝑅)) | |
| 10 | df-ne 2926 | . . . . . . . . . 10 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
| 11 | neeq1 2987 | . . . . . . . . . 10 ⊢ (𝑥 = (1r‘𝑅) → (𝑥 ≠ 𝑦 ↔ (1r‘𝑅) ≠ 𝑦)) | |
| 12 | 10, 11 | bitr3id 285 | . . . . . . . . 9 ⊢ (𝑥 = (1r‘𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r‘𝑅) ≠ 𝑦)) |
| 13 | neeq2 2988 | . . . . . . . . 9 ⊢ (𝑦 = (0g‘𝑅) → ((1r‘𝑅) ≠ 𝑦 ↔ (1r‘𝑅) ≠ (0g‘𝑅))) | |
| 14 | 12, 13 | rspc2ev 3590 | . . . . . . . 8 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵 ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
| 15 | 6, 8, 9, 14 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
| 16 | 15 | ex 412 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) |
| 17 | 4, 1, 2 | ring1eq0 20183 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
| 18 | 17 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
| 19 | 18 | necon3bd 2939 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑥 = 𝑦 → (1r‘𝑅) ≠ (0g‘𝑅))) |
| 20 | 19 | rexlimdvva 3186 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 → (1r‘𝑅) ≠ (0g‘𝑅))) |
| 21 | 16, 20 | impbid 212 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) |
| 22 | 4 | fvexi 6836 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 23 | 1sdom 9144 | . . . . . 6 ⊢ (𝐵 ∈ V → (1o ≺ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) | |
| 24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (1o ≺ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
| 25 | 21, 24 | bitr4di 289 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ 1o ≺ 𝐵)) |
| 26 | 1onn 8558 | . . . . . 6 ⊢ 1o ∈ ω | |
| 27 | sucdom 9133 | . . . . . 6 ⊢ (1o ∈ ω → (1o ≺ 𝐵 ↔ suc 1o ≼ 𝐵)) | |
| 28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (1o ≺ 𝐵 ↔ suc 1o ≼ 𝐵) |
| 29 | df-2o 8389 | . . . . . 6 ⊢ 2o = suc 1o | |
| 30 | 29 | breq1i 5099 | . . . . 5 ⊢ (2o ≼ 𝐵 ↔ suc 1o ≼ 𝐵) |
| 31 | 28, 30 | bitr4i 278 | . . . 4 ⊢ (1o ≺ 𝐵 ↔ 2o ≼ 𝐵) |
| 32 | 25, 31 | bitrdi 287 | . . 3 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ 2o ≼ 𝐵)) |
| 33 | 32 | pm5.32i 574 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
| 34 | 3, 33 | bitri 275 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3436 class class class wbr 5092 suc csuc 6309 ‘cfv 6482 ωcom 7799 1oc1o 8381 2oc2o 8382 ≼ cdom 8870 ≺ csdm 8871 Basecbs 17120 0gc0g 17343 1rcur 20066 Ringcrg 20118 NzRingcnzr 20397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-nzr 20398 |
| This theorem is referenced by: znfld 21467 znidomb 21468 |
| Copyright terms: Public domain | W3C validator |