![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnzr2 | Structured version Visualization version GIF version |
Description: Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
isnzr2.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnzr2 | ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
2 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
3 | 1, 2 | isnzr 20243 | . 2 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅))) |
4 | isnzr2.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 4, 1 | ringidcl 20040 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
6 | 5 | adantr 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (1r‘𝑅) ∈ 𝐵) |
7 | 4, 2 | ring0cl 20041 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (0g‘𝑅) ∈ 𝐵) |
8 | 7 | adantr 481 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (0g‘𝑅) ∈ 𝐵) |
9 | simpr 485 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → (1r‘𝑅) ≠ (0g‘𝑅)) | |
10 | df-ne 2940 | . . . . . . . . . 10 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
11 | neeq1 3002 | . . . . . . . . . 10 ⊢ (𝑥 = (1r‘𝑅) → (𝑥 ≠ 𝑦 ↔ (1r‘𝑅) ≠ 𝑦)) | |
12 | 10, 11 | bitr3id 284 | . . . . . . . . 9 ⊢ (𝑥 = (1r‘𝑅) → (¬ 𝑥 = 𝑦 ↔ (1r‘𝑅) ≠ 𝑦)) |
13 | neeq2 3003 | . . . . . . . . 9 ⊢ (𝑦 = (0g‘𝑅) → ((1r‘𝑅) ≠ 𝑦 ↔ (1r‘𝑅) ≠ (0g‘𝑅))) | |
14 | 12, 13 | rspc2ev 3620 | . . . . . . . 8 ⊢ (((1r‘𝑅) ∈ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵 ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
15 | 6, 8, 9, 14 | syl3anc 1371 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
16 | 15 | ex 413 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) → ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) |
17 | 4, 1, 2 | ring1eq0 20067 | . . . . . . . . 9 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
18 | 17 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((1r‘𝑅) = (0g‘𝑅) → 𝑥 = 𝑦)) |
19 | 18 | necon3bd 2953 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑥 = 𝑦 → (1r‘𝑅) ≠ (0g‘𝑅))) |
20 | 19 | rexlimdvva 3210 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦 → (1r‘𝑅) ≠ (0g‘𝑅))) |
21 | 16, 20 | impbid 211 | . . . . 5 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) |
22 | 4 | fvexi 6892 | . . . . . 6 ⊢ 𝐵 ∈ V |
23 | 1sdom 9231 | . . . . . 6 ⊢ (𝐵 ∈ V → (1o ≺ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦)) | |
24 | 22, 23 | ax-mp 5 | . . . . 5 ⊢ (1o ≺ 𝐵 ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ¬ 𝑥 = 𝑦) |
25 | 21, 24 | bitr4di 288 | . . . 4 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ 1o ≺ 𝐵)) |
26 | 1onn 8622 | . . . . . 6 ⊢ 1o ∈ ω | |
27 | sucdom 9218 | . . . . . 6 ⊢ (1o ∈ ω → (1o ≺ 𝐵 ↔ suc 1o ≼ 𝐵)) | |
28 | 26, 27 | ax-mp 5 | . . . . 5 ⊢ (1o ≺ 𝐵 ↔ suc 1o ≼ 𝐵) |
29 | df-2o 8449 | . . . . . 6 ⊢ 2o = suc 1o | |
30 | 29 | breq1i 5148 | . . . . 5 ⊢ (2o ≼ 𝐵 ↔ suc 1o ≼ 𝐵) |
31 | 28, 30 | bitr4i 277 | . . . 4 ⊢ (1o ≺ 𝐵 ↔ 2o ≼ 𝐵) |
32 | 25, 31 | bitrdi 286 | . . 3 ⊢ (𝑅 ∈ Ring → ((1r‘𝑅) ≠ (0g‘𝑅) ↔ 2o ≼ 𝐵)) |
33 | 32 | pm5.32i 575 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (1r‘𝑅) ≠ (0g‘𝑅)) ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
34 | 3, 33 | bitri 274 | 1 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 ∃wrex 3069 Vcvv 3473 class class class wbr 5141 suc csuc 6355 ‘cfv 6532 ωcom 7838 1oc1o 8441 2oc2o 8442 ≼ cdom 8920 ≺ csdm 8921 Basecbs 17126 0gc0g 17367 1rcur 19963 Ringcrg 20014 NzRingcnzr 20241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-2o 8449 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-plusg 17192 df-0g 17369 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-grp 18797 df-minusg 18798 df-mgp 19947 df-ur 19964 df-ring 20016 df-nzr 20242 |
This theorem is referenced by: opprnzr 20249 znfld 21049 znidomb 21050 |
Copyright terms: Public domain | W3C validator |