MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontrciOLD Structured version   Visualization version   GIF version

Theorem ontrciOLD 6470
Description: Obsolete version of ontr 6467 as of 28-Dec-2024. (Contributed by NM, 11-Jun-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
ontrciOLD Tr 𝐴

Proof of Theorem ontrciOLD
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 ontr 6467 . 2 (𝐴 ∈ On → Tr 𝐴)
31, 2ax-mp 5 1 Tr 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Tr wtr 5258  Oncon0 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-v 3470  df-in 3950  df-ss 3960  df-uni 4903  df-tr 5259  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-ord 6361  df-on 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator