| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ontr | Structured version Visualization version GIF version | ||
| Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) Put in closed form. (Resised by BJ, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| ontr | ⊢ (𝐴 ∈ On → Tr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6373 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | ordtr 6377 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → Tr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 Tr wtr 5239 Ord word 6362 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-ss 3948 df-uni 4888 df-tr 5240 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 |
| This theorem is referenced by: onunisuc 6474 ontrciOLD 6476 onuninsuci 7843 hfuni 36160 |
| Copyright terms: Public domain | W3C validator |