MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr Structured version   Visualization version   GIF version

Theorem ontr 6388
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.)
Assertion
Ref Expression
ontr (𝐴 ∈ On → Tr 𝐴)

Proof of Theorem ontr
StepHypRef Expression
1 eloni 6291 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordtr 6295 . 2 (Ord 𝐴 → Tr 𝐴)
31, 2syl 17 1 (𝐴 ∈ On → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  Tr wtr 5198  Ord word 6280  Oncon0 6281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-v 3439  df-in 3899  df-ss 3909  df-uni 4845  df-tr 5199  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-ord 6284  df-on 6285
This theorem is referenced by:  onunisuc  6389  ontrci  6391
  Copyright terms: Public domain W3C validator