![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ontr | Structured version Visualization version GIF version |
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) Put in closed form. (Resised by BJ, 28-Dec-2024.) |
Ref | Expression |
---|---|
ontr | ⊢ (𝐴 ∈ On → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6374 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordtr 6378 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Tr wtr 5265 Ord word 6363 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ral 3061 df-v 3475 df-in 3955 df-ss 3965 df-uni 4909 df-tr 5266 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: onunisuc 6474 ontrciOLD 6476 onuninsuci 7833 hfuni 35461 |
Copyright terms: Public domain | W3C validator |