MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr Structured version   Visualization version   GIF version

Theorem ontr 6504
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) Put in closed form. (Resised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
ontr (𝐴 ∈ On → Tr 𝐴)

Proof of Theorem ontr
StepHypRef Expression
1 eloni 6405 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordtr 6409 . 2 (Ord 𝐴 → Tr 𝐴)
31, 2syl 17 1 (𝐴 ∈ On → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Tr wtr 5283  Ord word 6394  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-uni 4932  df-tr 5284  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by:  onunisuc  6505  ontrciOLD  6507  onuninsuci  7877  hfuni  36148
  Copyright terms: Public domain W3C validator