MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ontr Structured version   Visualization version   GIF version

Theorem ontr 6446
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) Put in closed form. (Resised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
ontr (𝐴 ∈ On → Tr 𝐴)

Proof of Theorem ontr
StepHypRef Expression
1 eloni 6345 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordtr 6349 . 2 (Ord 𝐴 → Tr 𝐴)
31, 2syl 17 1 (𝐴 ∈ On → Tr 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Tr wtr 5217  Ord word 6334  Oncon0 6335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-ss 3934  df-uni 4875  df-tr 5218  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339
This theorem is referenced by:  onunisuc  6447  ontrciOLD  6449  onuninsuci  7819  hfuni  36179
  Copyright terms: Public domain W3C validator