Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ontr | Structured version Visualization version GIF version |
Description: An ordinal number is a transitive class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
ontr | ⊢ (𝐴 ∈ On → Tr 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6291 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | ordtr 6295 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ On → Tr 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 Tr wtr 5198 Ord word 6280 Oncon0 6281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3439 df-in 3899 df-ss 3909 df-uni 4845 df-tr 5199 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 |
This theorem is referenced by: onunisuc 6389 ontrci 6391 |
Copyright terms: Public domain | W3C validator |