![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onirri | Structured version Visualization version GIF version |
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onirri | ⊢ ¬ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onordi 6464 | . 2 ⊢ Ord 𝐴 |
3 | ordirr 6371 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Ord word 6352 Oncon0 6353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6356 df-on 6357 |
This theorem is referenced by: onssnel2i 6470 onuninsuci 7812 nlim2 8472 ord1eln01 8478 ord2eln012 8479 oelim2 8578 omopthlem2 8642 enpr2dOLD 9033 harndom 9539 ssttrcl 9692 wfelirr 9802 carduni 9958 pm54.43 9978 alephle 10065 alephfp 10085 pwxpndom2 10642 oldirr 27307 lrrecpo 27341 onsucsuccmpi 35132 onint1 35138 finxpreclem5 36080 wepwsolem 41555 |
Copyright terms: Public domain | W3C validator |