| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onirri | Structured version Visualization version GIF version | ||
| Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onirri | ⊢ ¬ 𝐴 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
| 2 | 1 | onordi 6465 | . 2 ⊢ Ord 𝐴 |
| 3 | ordirr 6370 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2108 Ord word 6351 Oncon0 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 |
| This theorem is referenced by: onssnel2i 6471 onuninsuci 7835 nlim2 8502 ord1eln01 8508 ord2eln012 8509 oelim2 8607 omopthlem2 8672 enpr2dOLD 9064 harndom 9576 ssttrcl 9729 wfelirr 9839 carduni 9995 pm54.43 10015 alephle 10102 alephfp 10122 pwxpndom2 10679 oldirr 27853 lrrecpo 27900 onsucsuccmpi 36461 onint1 36467 finxpreclem5 37413 wepwsolem 43066 |
| Copyright terms: Public domain | W3C validator |