MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onirri Structured version   Visualization version   GIF version

Theorem onirri 6497
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onirri ¬ 𝐴𝐴

Proof of Theorem onirri
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onordi 6495 . 2 Ord 𝐴
3 ordirr 6402 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3ax-mp 5 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  Ord word 6383  Oncon0 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388
This theorem is referenced by:  onssnel2i  6501  onuninsuci  7861  nlim2  8528  ord1eln01  8534  ord2eln012  8535  oelim2  8633  omopthlem2  8698  enpr2dOLD  9090  harndom  9602  ssttrcl  9755  wfelirr  9865  carduni  10021  pm54.43  10041  alephle  10128  alephfp  10148  pwxpndom2  10705  oldirr  27928  lrrecpo  27974  onsucsuccmpi  36444  onint1  36450  finxpreclem5  37396  wepwsolem  43054
  Copyright terms: Public domain W3C validator