Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onirri | Structured version Visualization version GIF version |
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onirri | ⊢ ¬ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . . 3 ⊢ 𝐴 ∈ On | |
2 | 1 | onordi 6278 | . 2 ⊢ Ord 𝐴 |
3 | ordirr 6191 | . 2 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2111 Ord word 6172 Oncon0 6173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-tr 5142 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-ord 6176 df-on 6177 |
This theorem is referenced by: onssnel2i 6284 onuninsuci 7559 oelim2 8236 omopthlem2 8298 enpr2d 8623 harndom 9064 wfelirr 9292 carduni 9448 pm54.43 9468 alephle 9553 alephfp 9573 pwxpndom2 10130 oldirr 33655 lrrecpo 33672 onsucsuccmpi 34207 onint1 34213 finxpreclem5 35118 wepwsolem 40387 |
Copyright terms: Public domain | W3C validator |