MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onirri Structured version   Visualization version   GIF version

Theorem onirri 6467
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onirri ¬ 𝐴𝐴

Proof of Theorem onirri
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onordi 6465 . 2 Ord 𝐴
3 ordirr 6370 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3ax-mp 5 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  Ord word 6351  Oncon0 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356
This theorem is referenced by:  onssnel2i  6471  onuninsuci  7835  nlim2  8502  ord1eln01  8508  ord2eln012  8509  oelim2  8607  omopthlem2  8672  enpr2dOLD  9064  harndom  9576  ssttrcl  9729  wfelirr  9839  carduni  9995  pm54.43  10015  alephle  10102  alephfp  10122  pwxpndom2  10679  oldirr  27853  lrrecpo  27900  onsucsuccmpi  36461  onint1  36467  finxpreclem5  37413  wepwsolem  43066
  Copyright terms: Public domain W3C validator