Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onirri Structured version   Visualization version   GIF version

Theorem onirri 6280
 Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onirri ¬ 𝐴𝐴

Proof of Theorem onirri
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onordi 6278 . 2 Ord 𝐴
3 ordirr 6191 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3ax-mp 5 1 ¬ 𝐴𝐴
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∈ wcel 2111  Ord word 6172  Oncon0 6173 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-tr 5142  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-ord 6176  df-on 6177 This theorem is referenced by:  onssnel2i  6284  onuninsuci  7559  oelim2  8236  omopthlem2  8298  enpr2d  8623  harndom  9064  wfelirr  9292  carduni  9448  pm54.43  9468  alephle  9553  alephfp  9573  pwxpndom2  10130  oldirr  33655  lrrecpo  33672  onsucsuccmpi  34207  onint1  34213  finxpreclem5  35118  wepwsolem  40387
 Copyright terms: Public domain W3C validator