MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onirri Structured version   Visualization version   GIF version

Theorem onirri 6425
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onirri ¬ 𝐴𝐴

Proof of Theorem onirri
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onordi 6424 . 2 Ord 𝐴
3 ordirr 6329 . 2 (Ord 𝐴 → ¬ 𝐴𝐴)
42, 3ax-mp 5 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2113  Ord word 6310  Oncon0 6311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-tr 5201  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6314  df-on 6315
This theorem is referenced by:  onssnel2i  6429  onuninsuci  7776  nlim2  8411  ord1eln01  8417  ord2eln012  8418  oelim2  8516  omopthlem2  8581  harndom  9455  ssttrcl  9612  wfelirr  9725  carduni  9881  pm54.43  9901  alephle  9986  alephfp  10006  pwxpndom2  10563  oldirr  27836  lrrecpo  27885  onsucsuccmpi  36508  onint1  36514  finxpreclem5  37460  wepwsolem  43159
  Copyright terms: Public domain W3C validator