| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onordi | ⊢ Ord 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: onirri 6447 onsucssi 7817 ord1eln01 8460 ord2eln012 8461 oawordeulem 8518 omopthi 8625 en2 9226 en3 9227 ssttrcl 9668 ttrcltr 9669 dmttrcl 9674 ttrclselem2 9679 bndrank 9794 rankprb 9804 rankuniss 9819 rankelun 9825 rankelpr 9826 rankelop 9827 rankmapu 9831 rankxplim3 9834 rankxpsuc 9835 cardlim 9925 carduni 9934 dfac8b 9984 alephdom2 10040 alephfp 10061 dfac12lem2 10098 dju1p1e2ALT 10128 cfsmolem 10223 ttukeylem6 10467 ttukeylem7 10468 unsnen 10506 efgmnvl 19644 nogt01o 27608 scutbdaybnd2lim 27729 slerec 27731 bday1s 27743 cuteq1 27746 newbday 27813 negsproplem7 27940 mulsproplem13 28031 mulsproplem14 28032 sltonold 28162 hfuni 36172 finxpsuclem 37385 pwfi2f1o 43085 nelsubc3 49057 |
| Copyright terms: Public domain | W3C validator |