Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onordi | ⊢ Ord 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | eloni 6280 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Ord word 6269 Oncon0 6270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3435 df-in 3895 df-ss 3905 df-uni 4841 df-tr 5193 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-ord 6273 df-on 6274 |
This theorem is referenced by: ontrci 6376 onirri 6377 onuniorsuci 7695 onsucssi 7697 ord1eln01 8335 ord2eln012 8336 oawordeulem 8394 omopthi 8500 ssttrcl 9482 ttrcltr 9483 dmttrcl 9488 ttrclselem2 9493 bndrank 9608 rankprb 9618 rankuniss 9633 rankelun 9639 rankelpr 9640 rankelop 9641 rankmapu 9645 rankxplim3 9648 rankxpsuc 9649 cardlim 9739 carduni 9748 dfac8b 9796 alephdom2 9852 alephfp 9873 dfac12lem2 9909 dju1p1e2ALT 9939 cfsmolem 10035 ttukeylem6 10279 ttukeylem7 10280 unsnen 10318 efgmnvl 19329 nogt01o 33908 scutbdaybnd2lim 34020 slerec 34022 bday1s 34034 newbday 34091 hfuni 34495 finxpsuclem 35577 pwfi2f1o 40928 |
Copyright terms: Public domain | W3C validator |