Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onordi | ⊢ Ord 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | eloni 6278 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Ord word 6267 Oncon0 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3433 df-in 3895 df-ss 3905 df-uni 4842 df-tr 5194 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-ord 6271 df-on 6272 |
This theorem is referenced by: ontrci 6374 onirri 6375 onuniorsuci 7686 onsucssi 7688 ord1eln01 8324 ord2eln012 8325 oawordeulem 8383 omopthi 8489 ssttrcl 9471 ttrcltr 9472 dmttrcl 9477 ttrclselem2 9482 bndrank 9597 rankprb 9607 rankuniss 9622 rankelun 9628 rankelpr 9629 rankelop 9630 rankmapu 9634 rankxplim3 9637 rankxpsuc 9638 cardlim 9728 carduni 9737 dfac8b 9785 alephdom2 9841 alephfp 9862 dfac12lem2 9898 dju1p1e2ALT 9928 cfsmolem 10024 ttukeylem6 10268 ttukeylem7 10269 unsnen 10307 efgmnvl 19318 nogt01o 33896 scutbdaybnd2lim 34008 slerec 34010 bday1s 34022 newbday 34079 hfuni 34483 finxpsuclem 35565 pwfi2f1o 40918 |
Copyright terms: Public domain | W3C validator |