![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onordi | ⊢ Ord 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | eloni 5988 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Ord word 5977 Oncon0 5978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-v 3400 df-in 3799 df-ss 3806 df-uni 4674 df-tr 4990 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-ord 5981 df-on 5982 |
This theorem is referenced by: ontrci 6083 onirri 6084 onun2i 6093 onuniorsuci 7319 onsucssi 7321 oawordeulem 7920 omopthi 8023 bndrank 9003 rankprb 9013 rankuniss 9028 rankelun 9034 rankelpr 9035 rankelop 9036 rankmapu 9040 rankxplim3 9043 rankxpsuc 9044 cardlim 9133 carduni 9142 dfac8b 9189 alephdom2 9245 alephfp 9266 dfac12lem2 9303 pm110.643ALT 9337 cfsmolem 9429 ttukeylem6 9673 ttukeylem7 9674 unsnen 9712 efgmnvl 18515 slerec 32516 hfuni 32884 finxpsuclem 33832 pwfi2f1o 38635 |
Copyright terms: Public domain | W3C validator |