![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onordi | ⊢ Ord 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | eloni 6405 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Ord word 6394 Oncon0 6395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 |
This theorem is referenced by: onirri 6508 onsucssi 7878 ord1eln01 8552 ord2eln012 8553 oawordeulem 8610 omopthi 8717 en2 9343 en3 9344 ssttrcl 9784 ttrcltr 9785 dmttrcl 9790 ttrclselem2 9795 bndrank 9910 rankprb 9920 rankuniss 9935 rankelun 9941 rankelpr 9942 rankelop 9943 rankmapu 9947 rankxplim3 9950 rankxpsuc 9951 cardlim 10041 carduni 10050 dfac8b 10100 alephdom2 10156 alephfp 10177 dfac12lem2 10214 dju1p1e2ALT 10244 cfsmolem 10339 ttukeylem6 10583 ttukeylem7 10584 unsnen 10622 efgmnvl 19756 nogt01o 27759 scutbdaybnd2lim 27880 slerec 27882 bday1s 27894 cuteq1 27896 newbday 27958 negsproplem7 28084 mulsproplem13 28172 mulsproplem14 28173 sltonold 28301 pw2bday 28436 hfuni 36148 finxpsuclem 37363 pwfi2f1o 43053 |
Copyright terms: Public domain | W3C validator |