MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onordi Structured version   Visualization version   GIF version

Theorem onordi 6419
Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onordi Ord 𝐴

Proof of Theorem onordi
StepHypRef Expression
1 on.1 . 2 𝐴 ∈ On
2 eloni 6316 . 2 (𝐴 ∈ On → Ord 𝐴)
31, 2ax-mp 5 1 Ord 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Ord word 6305  Oncon0 6306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-v 3438  df-ss 3914  df-uni 4857  df-tr 5197  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310
This theorem is referenced by:  onirri  6420  onsucssi  7771  ord1eln01  8411  ord2eln012  8412  oawordeulem  8469  omopthi  8576  en2  9164  en3  9165  ssttrcl  9605  ttrcltr  9606  dmttrcl  9611  ttrclselem2  9616  bndrank  9734  rankprb  9744  rankuniss  9759  rankelun  9765  rankelpr  9766  rankelop  9767  rankmapu  9771  rankxplim3  9774  rankxpsuc  9775  cardlim  9865  carduni  9874  dfac8b  9922  alephdom2  9978  alephfp  9999  dfac12lem2  10036  dju1p1e2ALT  10066  cfsmolem  10161  ttukeylem6  10405  ttukeylem7  10406  unsnen  10444  efgmnvl  19626  nogt01o  27635  scutbdaybnd2lim  27758  slerec  27760  bday1s  27775  cuteq1  27778  newbday  27847  negsproplem7  27976  mulsproplem13  28067  mulsproplem14  28068  sltonold  28198  hfuni  36226  finxpsuclem  37439  pwfi2f1o  43137  nelsubc3  49111
  Copyright terms: Public domain W3C validator