| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onordi | ⊢ Ord 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | eloni 6367 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Ord word 6356 Oncon0 6357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-ss 3948 df-uni 4889 df-tr 5235 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 |
| This theorem is referenced by: onirri 6472 onsucssi 7841 ord1eln01 8513 ord2eln012 8514 oawordeulem 8571 omopthi 8678 en2 9292 en3 9293 ssttrcl 9734 ttrcltr 9735 dmttrcl 9740 ttrclselem2 9745 bndrank 9860 rankprb 9870 rankuniss 9885 rankelun 9891 rankelpr 9892 rankelop 9893 rankmapu 9897 rankxplim3 9900 rankxpsuc 9901 cardlim 9991 carduni 10000 dfac8b 10050 alephdom2 10106 alephfp 10127 dfac12lem2 10164 dju1p1e2ALT 10194 cfsmolem 10289 ttukeylem6 10533 ttukeylem7 10534 unsnen 10572 efgmnvl 19700 nogt01o 27665 scutbdaybnd2lim 27786 slerec 27788 bday1s 27800 cuteq1 27803 newbday 27870 negsproplem7 27997 mulsproplem13 28088 mulsproplem14 28089 sltonold 28219 hfuni 36207 finxpsuclem 37420 pwfi2f1o 43087 nelsubc3 49005 |
| Copyright terms: Public domain | W3C validator |