| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onordi | ⊢ Ord 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | eloni 6316 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3914 df-uni 4857 df-tr 5197 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 |
| This theorem is referenced by: onirri 6420 onsucssi 7771 ord1eln01 8411 ord2eln012 8412 oawordeulem 8469 omopthi 8576 en2 9164 en3 9165 ssttrcl 9605 ttrcltr 9606 dmttrcl 9611 ttrclselem2 9616 bndrank 9734 rankprb 9744 rankuniss 9759 rankelun 9765 rankelpr 9766 rankelop 9767 rankmapu 9771 rankxplim3 9774 rankxpsuc 9775 cardlim 9865 carduni 9874 dfac8b 9922 alephdom2 9978 alephfp 9999 dfac12lem2 10036 dju1p1e2ALT 10066 cfsmolem 10161 ttukeylem6 10405 ttukeylem7 10406 unsnen 10444 efgmnvl 19626 nogt01o 27635 scutbdaybnd2lim 27758 slerec 27760 bday1s 27775 cuteq1 27778 newbday 27847 negsproplem7 27976 mulsproplem13 28067 mulsproplem14 28068 sltonold 28198 hfuni 36226 finxpsuclem 37439 pwfi2f1o 43137 nelsubc3 49111 |
| Copyright terms: Public domain | W3C validator |