| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version | ||
| Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
| Ref | Expression |
|---|---|
| on.1 | ⊢ 𝐴 ∈ On |
| Ref | Expression |
|---|---|
| onordi | ⊢ Ord 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | eloni 6330 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Ord word 6319 Oncon0 6320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3446 df-ss 3928 df-uni 4868 df-tr 5210 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 |
| This theorem is referenced by: onirri 6435 onsucssi 7797 ord1eln01 8437 ord2eln012 8438 oawordeulem 8495 omopthi 8602 en2 9202 en3 9203 ssttrcl 9644 ttrcltr 9645 dmttrcl 9650 ttrclselem2 9655 bndrank 9770 rankprb 9780 rankuniss 9795 rankelun 9801 rankelpr 9802 rankelop 9803 rankmapu 9807 rankxplim3 9810 rankxpsuc 9811 cardlim 9901 carduni 9910 dfac8b 9960 alephdom2 10016 alephfp 10037 dfac12lem2 10074 dju1p1e2ALT 10104 cfsmolem 10199 ttukeylem6 10443 ttukeylem7 10444 unsnen 10482 efgmnvl 19620 nogt01o 27584 scutbdaybnd2lim 27705 slerec 27707 bday1s 27719 cuteq1 27722 newbday 27789 negsproplem7 27916 mulsproplem13 28007 mulsproplem14 28008 sltonold 28138 hfuni 36145 finxpsuclem 37358 pwfi2f1o 43058 nelsubc3 49033 |
| Copyright terms: Public domain | W3C validator |