Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onordi | Structured version Visualization version GIF version |
Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
on.1 | ⊢ 𝐴 ∈ On |
Ref | Expression |
---|---|
onordi | ⊢ Ord 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on.1 | . 2 ⊢ 𝐴 ∈ On | |
2 | eloni 6261 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ Ord 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Ord word 6250 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 |
This theorem is referenced by: ontrci 6357 onirri 6358 onuniorsuci 7661 onsucssi 7663 oawordeulem 8347 omopthi 8451 bndrank 9530 rankprb 9540 rankuniss 9555 rankelun 9561 rankelpr 9562 rankelop 9563 rankmapu 9567 rankxplim3 9570 rankxpsuc 9571 cardlim 9661 carduni 9670 dfac8b 9718 alephdom2 9774 alephfp 9795 dfac12lem2 9831 dju1p1e2ALT 9861 cfsmolem 9957 ttukeylem6 10201 ttukeylem7 10202 unsnen 10240 efgmnvl 19235 ssttrcl 33701 ttrcltr 33702 dmttrcl 33707 ttrclselem2 33712 nogt01o 33826 scutbdaybnd2lim 33938 slerec 33940 bday1s 33952 newbday 34009 hfuni 34413 finxpsuclem 35495 pwfi2f1o 40837 |
Copyright terms: Public domain | W3C validator |