![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opcom | Structured version Visualization version GIF version |
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.) |
Ref | Expression |
---|---|
opcom.1 | ⊢ 𝐴 ∈ V |
opcom.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opcom | ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opcom.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | opcom.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | opth 5472 | . 2 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐴)) |
4 | eqcom 2735 | . . 3 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 4 | anbi2i 622 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵)) |
6 | anidm 564 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵) | |
7 | 3, 5, 6 | 3bitri 297 | 1 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⟨cop 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |