MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opcom Structured version   Visualization version   GIF version

Theorem opcom 5497
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
Hypotheses
Ref Expression
opcom.1 𝐴 ∈ V
opcom.2 𝐵 ∈ V
Assertion
Ref Expression
opcom (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)

Proof of Theorem opcom
StepHypRef Expression
1 opcom.1 . . 3 𝐴 ∈ V
2 opcom.2 . . 3 𝐵 ∈ V
31, 2opth 5472 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝐴 = 𝐵𝐵 = 𝐴))
4 eqcom 2735 . . 3 (𝐵 = 𝐴𝐴 = 𝐵)
54anbi2i 622 . 2 ((𝐴 = 𝐵𝐵 = 𝐴) ↔ (𝐴 = 𝐵𝐴 = 𝐵))
6 anidm 564 . 2 ((𝐴 = 𝐵𝐴 = 𝐵) ↔ 𝐴 = 𝐵)
73, 5, 63bitri 297 1 (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  cop 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator