| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opcom | Structured version Visualization version GIF version | ||
| Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.) |
| Ref | Expression |
|---|---|
| opcom.1 | ⊢ 𝐴 ∈ V |
| opcom.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opcom | ⊢ (〈𝐴, 𝐵〉 = 〈𝐵, 𝐴〉 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opcom.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | opcom.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | opth 5414 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐵, 𝐴〉 ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐴)) |
| 4 | eqcom 2738 | . . 3 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
| 5 | 4 | anbi2i 623 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵)) |
| 6 | anidm 564 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵) | |
| 7 | 3, 5, 6 | 3bitri 297 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐵, 𝐴〉 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |