MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opcom Structured version   Visualization version   GIF version

Theorem opcom 5368
Description: An ordered pair commutes iff its members are equal. (Contributed by NM, 28-May-2009.)
Hypotheses
Ref Expression
opcom.1 𝐴 ∈ V
opcom.2 𝐵 ∈ V
Assertion
Ref Expression
opcom (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)

Proof of Theorem opcom
StepHypRef Expression
1 opcom.1 . . 3 𝐴 ∈ V
2 opcom.2 . . 3 𝐵 ∈ V
31, 2opth 5345 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝐴 = 𝐵𝐵 = 𝐴))
4 eqcom 2829 . . 3 (𝐵 = 𝐴𝐴 = 𝐵)
54anbi2i 625 . 2 ((𝐴 = 𝐵𝐵 = 𝐴) ↔ (𝐴 = 𝐵𝐴 = 𝐵))
6 anidm 568 . 2 ((𝐴 = 𝐵𝐴 = 𝐵) ↔ 𝐴 = 𝐵)
73, 5, 63bitri 300 1 (⟨𝐴, 𝐵⟩ = ⟨𝐵, 𝐴⟩ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2114  Vcvv 3469  cop 4545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator