| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeqsn | Structured version Visualization version GIF version | ||
| Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| opeqsn.1 | ⊢ 𝐴 ∈ V |
| opeqsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opeqsn | ⊢ (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeqsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opeqsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opeqsng 5441 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 Vcvv 3434 {csn 4574 〈cop 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 |
| This theorem is referenced by: snopeqop 5444 propeqop 5445 relop 5788 |
| Copyright terms: Public domain | W3C validator |