![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeqsn | Structured version Visualization version GIF version |
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
opeqsn.1 | ⊢ 𝐴 ∈ V |
opeqsn.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
opeqsn | ⊢ (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opeqsn.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opeqsng 5502 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 {csn 4627 ⟨cop 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 |
This theorem is referenced by: snopeqop 5505 propeqop 5506 relop 5849 |
Copyright terms: Public domain | W3C validator |