MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqsn Structured version   Visualization version   GIF version

Theorem opeqsn 5448
Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.)
Hypotheses
Ref Expression
opeqsn.1 𝐴 ∈ V
opeqsn.2 𝐵 ∈ V
Assertion
Ref Expression
opeqsn (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴}))

Proof of Theorem opeqsn
StepHypRef Expression
1 opeqsn.1 . 2 𝐴 ∈ V
2 opeqsn.2 . 2 𝐵 ∈ V
3 opeqsng 5447 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴})))
41, 2, 3mp2an 689 1 (⟨𝐴, 𝐵⟩ = {𝐶} ↔ (𝐴 = 𝐵𝐶 = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  {csn 4573  cop 4579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580
This theorem is referenced by:  snopeqop  5450  propeqop  5451  relop  5792
  Copyright terms: Public domain W3C validator