| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeqsn | Structured version Visualization version GIF version | ||
| Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Revised by AV, 15-Jul-2022.) (Avoid depending on this detail.) |
| Ref | Expression |
|---|---|
| opeqsn.1 | ⊢ 𝐴 ∈ V |
| opeqsn.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opeqsn | ⊢ (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeqsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opeqsn.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | opeqsng 5475 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴}))) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3457 {csn 4599 〈cop 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 |
| This theorem is referenced by: snopeqop 5478 propeqop 5479 relop 5827 |
| Copyright terms: Public domain | W3C validator |