![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opideq | Structured version Visualization version GIF version |
Description: Equality conditions for ordered pairs ⟨𝐴, 𝐴⟩ and ⟨𝐵, 𝐵⟩. (Contributed by Peter Mazsa, 22-Jul-2019.) (Revised by Thierry Arnoux, 16-Feb-2022.) |
Ref | Expression |
---|---|
opideq | ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthg 5477 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵))) | |
2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵))) |
3 | anidm 564 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |