Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opideq | Structured version Visualization version GIF version |
Description: Equality conditions for ordered pairs 〈𝐴, 𝐴〉 and 〈𝐵, 𝐵〉. (Contributed by Peter Mazsa, 22-Jul-2019.) (Revised by Thierry Arnoux, 16-Feb-2022.) |
Ref | Expression |
---|---|
opideq | ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthg 5386 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵))) | |
2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵))) |
3 | anidm 564 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵) | |
4 | 2, 3 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |