Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opideq Structured version   Visualization version   GIF version

Theorem opideq 38345
Description: Equality conditions for ordered pairs 𝐴, 𝐴 and 𝐵, 𝐵. (Contributed by Peter Mazsa, 22-Jul-2019.) (Revised by Thierry Arnoux, 16-Feb-2022.)
Assertion
Ref Expression
opideq (𝐴𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ 𝐴 = 𝐵))

Proof of Theorem opideq
StepHypRef Expression
1 opthg 5481 . . 3 ((𝐴𝑉𝐴𝑉) → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ (𝐴 = 𝐵𝐴 = 𝐵)))
21anidms 566 . 2 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ (𝐴 = 𝐵𝐴 = 𝐵)))
3 anidm 564 . 2 ((𝐴 = 𝐵𝐴 = 𝐵) ↔ 𝐴 = 𝐵)
42, 3bitrdi 287 1 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cop 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator