Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opideq Structured version   Visualization version   GIF version

Theorem opideq 35469
Description: Equality conditions for ordered pairs 𝐴, 𝐴 and 𝐵, 𝐵. (Contributed by Peter Mazsa, 22-Jul-2019.) (Revised by Thierry Arnoux, 16-Feb-2022.)
Assertion
Ref Expression
opideq (𝐴𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ 𝐴 = 𝐵))

Proof of Theorem opideq
StepHypRef Expression
1 opthg 5365 . . 3 ((𝐴𝑉𝐴𝑉) → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ (𝐴 = 𝐵𝐴 = 𝐵)))
21anidms 567 . 2 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ (𝐴 = 𝐵𝐴 = 𝐵)))
3 anidm 565 . 2 ((𝐴 = 𝐵𝐴 = 𝐵) ↔ 𝐴 = 𝐵)
42, 3syl6bb 288 1 (𝐴𝑉 → (⟨𝐴, 𝐴⟩ = ⟨𝐵, 𝐵⟩ ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  cop 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pr 5325
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator