Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvrabga Structured version   Visualization version   GIF version

Theorem brcnvrabga 37211
Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.)
Hypotheses
Ref Expression
brrabga.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
brcnvrabga.2 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
Assertion
Ref Expression
brcnvrabga ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑅𝐵, 𝐶⟩ ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem brcnvrabga
StepHypRef Expression
1 relcnv 6104 . . . 4 Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
2 brcnvrabga.2 . . . . 5 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
32releqi 5778 . . . 4 (Rel 𝑅 ↔ Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑})
41, 3mpbir 230 . . 3 Rel 𝑅
54relbrcnv 6107 . 2 (⟨𝐵, 𝐶𝑅𝐴𝐴𝑅𝐵, 𝐶⟩)
6 brrabga.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
763coml 1128 . . . 4 ((𝑦 = 𝐵𝑧 = 𝐶𝑥 = 𝐴) → (𝜑𝜓))
82cnveqi 5875 . . . . 5 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
9 reloprab 7468 . . . . . 6 Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
10 dfrel2 6189 . . . . . 6 (Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} ↔ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑})
119, 10mpbi 229 . . . . 5 {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
128, 11eqtri 2761 . . . 4 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
137, 12brrabga 37210 . . 3 ((𝐵𝑊𝐶𝑋𝐴𝑉) → (⟨𝐵, 𝐶𝑅𝐴𝜓))
14133comr 1126 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶𝑅𝐴𝜓))
155, 14bitr3id 285 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑅𝐵, 𝐶⟩ ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107  cop 4635   class class class wbr 5149  ccnv 5676  Rel wrel 5682  {coprab 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-oprab 7413
This theorem is referenced by:  brredunds  37496
  Copyright terms: Public domain W3C validator