![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvrabga | Structured version Visualization version GIF version |
Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
brrabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
brcnvrabga.2 | ⊢ 𝑅 = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brcnvrabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑅〈𝐵, 𝐶〉 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6113 | . . . 4 ⊢ Rel ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} | |
2 | brcnvrabga.2 | . . . . 5 ⊢ 𝑅 = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} | |
3 | 2 | releqi 5783 | . . . 4 ⊢ (Rel 𝑅 ↔ Rel ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑}) |
4 | 1, 3 | mpbir 230 | . . 3 ⊢ Rel 𝑅 |
5 | 4 | relbrcnv 6116 | . 2 ⊢ (〈𝐵, 𝐶〉◡𝑅𝐴 ↔ 𝐴𝑅〈𝐵, 𝐶〉) |
6 | brrabga.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
7 | 6 | 3coml 1124 | . . . 4 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
8 | 2 | cnveqi 5881 | . . . . 5 ⊢ ◡𝑅 = ◡◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} |
9 | reloprab 7485 | . . . . . 6 ⊢ Rel {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} | |
10 | dfrel2 6198 | . . . . . 6 ⊢ (Rel {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} ↔ ◡◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} = {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑}) | |
11 | 9, 10 | mpbi 229 | . . . . 5 ⊢ ◡◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} = {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} |
12 | 8, 11 | eqtri 2756 | . . . 4 ⊢ ◡𝑅 = {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} |
13 | 7, 12 | brrabga 37845 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (〈𝐵, 𝐶〉◡𝑅𝐴 ↔ 𝜓)) |
14 | 13 | 3comr 1122 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐵, 𝐶〉◡𝑅𝐴 ↔ 𝜓)) |
15 | 5, 14 | bitr3id 284 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑅〈𝐵, 𝐶〉 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 〈cop 4638 class class class wbr 5152 ◡ccnv 5681 Rel wrel 5687 {coprab 7427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-oprab 7430 |
This theorem is referenced by: brredunds 38130 |
Copyright terms: Public domain | W3C validator |