Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvrabga Structured version   Visualization version   GIF version

Theorem brcnvrabga 36456
Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.)
Hypotheses
Ref Expression
brrabga.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
brcnvrabga.2 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
Assertion
Ref Expression
brcnvrabga ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑅𝐵, 𝐶⟩ ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem brcnvrabga
StepHypRef Expression
1 relcnv 6009 . . . 4 Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
2 brcnvrabga.2 . . . . 5 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
32releqi 5686 . . . 4 (Rel 𝑅 ↔ Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑})
41, 3mpbir 230 . . 3 Rel 𝑅
54relbrcnv 6012 . 2 (⟨𝐵, 𝐶𝑅𝐴𝐴𝑅𝐵, 𝐶⟩)
6 brrabga.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
763coml 1125 . . . 4 ((𝑦 = 𝐵𝑧 = 𝐶𝑥 = 𝐴) → (𝜑𝜓))
82cnveqi 5780 . . . . 5 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
9 reloprab 7325 . . . . . 6 Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
10 dfrel2 6089 . . . . . 6 (Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} ↔ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑})
119, 10mpbi 229 . . . . 5 {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
128, 11eqtri 2767 . . . 4 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
137, 12brrabga 36455 . . 3 ((𝐵𝑊𝐶𝑋𝐴𝑉) → (⟨𝐵, 𝐶𝑅𝐴𝜓))
14133comr 1123 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶𝑅𝐴𝜓))
155, 14bitr3id 284 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑅𝐵, 𝐶⟩ ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1541  wcel 2109  cop 4572   class class class wbr 5078  ccnv 5587  Rel wrel 5593  {coprab 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-oprab 7272
This theorem is referenced by:  brredunds  36718
  Copyright terms: Public domain W3C validator