![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvrabga | Structured version Visualization version GIF version |
Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
brrabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
brcnvrabga.2 | ⊢ 𝑅 = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brcnvrabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑅〈𝐵, 𝐶〉 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6134 | . . . 4 ⊢ Rel ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} | |
2 | brcnvrabga.2 | . . . . 5 ⊢ 𝑅 = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} | |
3 | 2 | releqi 5801 | . . . 4 ⊢ (Rel 𝑅 ↔ Rel ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑}) |
4 | 1, 3 | mpbir 231 | . . 3 ⊢ Rel 𝑅 |
5 | 4 | relbrcnv 6137 | . 2 ⊢ (〈𝐵, 𝐶〉◡𝑅𝐴 ↔ 𝐴𝑅〈𝐵, 𝐶〉) |
6 | brrabga.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
7 | 6 | 3coml 1127 | . . . 4 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
8 | 2 | cnveqi 5899 | . . . . 5 ⊢ ◡𝑅 = ◡◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} |
9 | reloprab 7509 | . . . . . 6 ⊢ Rel {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} | |
10 | dfrel2 6220 | . . . . . 6 ⊢ (Rel {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} ↔ ◡◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} = {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑}) | |
11 | 9, 10 | mpbi 230 | . . . . 5 ⊢ ◡◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} = {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} |
12 | 8, 11 | eqtri 2768 | . . . 4 ⊢ ◡𝑅 = {〈〈𝑦, 𝑧〉, 𝑥〉 ∣ 𝜑} |
13 | 7, 12 | brrabga 38297 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (〈𝐵, 𝐶〉◡𝑅𝐴 ↔ 𝜓)) |
14 | 13 | 3comr 1125 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (〈𝐵, 𝐶〉◡𝑅𝐴 ↔ 𝜓)) |
15 | 5, 14 | bitr3id 285 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑅〈𝐵, 𝐶〉 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ◡ccnv 5699 Rel wrel 5705 {coprab 7449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-oprab 7452 |
This theorem is referenced by: brredunds 38582 |
Copyright terms: Public domain | W3C validator |