![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvrabga | Structured version Visualization version GIF version |
Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.) |
Ref | Expression |
---|---|
brrabga.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
brcnvrabga.2 | ⊢ 𝑅 = ◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
brcnvrabga | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑅⟨𝐵, 𝐶⟩ ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6100 | . . . 4 ⊢ Rel ◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} | |
2 | brcnvrabga.2 | . . . . 5 ⊢ 𝑅 = ◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} | |
3 | 2 | releqi 5775 | . . . 4 ⊢ (Rel 𝑅 ↔ Rel ◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}) |
4 | 1, 3 | mpbir 230 | . . 3 ⊢ Rel 𝑅 |
5 | 4 | relbrcnv 6103 | . 2 ⊢ (⟨𝐵, 𝐶⟩◡𝑅𝐴 ↔ 𝐴𝑅⟨𝐵, 𝐶⟩) |
6 | brrabga.1 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
7 | 6 | 3coml 1127 | . . . 4 ⊢ ((𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
8 | 2 | cnveqi 5872 | . . . . 5 ⊢ ◡𝑅 = ◡◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} |
9 | reloprab 7464 | . . . . . 6 ⊢ Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} | |
10 | dfrel2 6185 | . . . . . 6 ⊢ (Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} ↔ ◡◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}) | |
11 | 9, 10 | mpbi 229 | . . . . 5 ⊢ ◡◡{⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} |
12 | 8, 11 | eqtri 2760 | . . . 4 ⊢ ◡𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} |
13 | 7, 12 | brrabga 37198 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑉) → (⟨𝐵, 𝐶⟩◡𝑅𝐴 ↔ 𝜓)) |
14 | 13 | 3comr 1125 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (⟨𝐵, 𝐶⟩◡𝑅𝐴 ↔ 𝜓)) |
15 | 5, 14 | bitr3id 284 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴𝑅⟨𝐵, 𝐶⟩ ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⟨cop 4633 class class class wbr 5147 ◡ccnv 5674 Rel wrel 5680 {coprab 7406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-oprab 7409 |
This theorem is referenced by: brredunds 37484 |
Copyright terms: Public domain | W3C validator |