Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvrabga Structured version   Visualization version   GIF version

Theorem brcnvrabga 38331
Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022.)
Hypotheses
Ref Expression
brrabga.1 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
brcnvrabga.2 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
Assertion
Ref Expression
brcnvrabga ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑅𝐵, 𝐶⟩ ↔ 𝜓))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)

Proof of Theorem brcnvrabga
StepHypRef Expression
1 relcnv 6078 . . . 4 Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
2 brcnvrabga.2 . . . . 5 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
32releqi 5743 . . . 4 (Rel 𝑅 ↔ Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑})
41, 3mpbir 231 . . 3 Rel 𝑅
54relbrcnv 6081 . 2 (⟨𝐵, 𝐶𝑅𝐴𝐴𝑅𝐵, 𝐶⟩)
6 brrabga.1 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
763coml 1127 . . . 4 ((𝑦 = 𝐵𝑧 = 𝐶𝑥 = 𝐴) → (𝜑𝜓))
82cnveqi 5841 . . . . 5 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
9 reloprab 7451 . . . . . 6 Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
10 dfrel2 6165 . . . . . 6 (Rel {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} ↔ {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑})
119, 10mpbi 230 . . . . 5 {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑} = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
128, 11eqtri 2753 . . . 4 𝑅 = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ 𝜑}
137, 12brrabga 38330 . . 3 ((𝐵𝑊𝐶𝑋𝐴𝑉) → (⟨𝐵, 𝐶𝑅𝐴𝜓))
14133comr 1125 . 2 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨𝐵, 𝐶𝑅𝐴𝜓))
155, 14bitr3id 285 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝐴𝑅𝐵, 𝐶⟩ ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  cop 4598   class class class wbr 5110  ccnv 5640  Rel wrel 5646  {coprab 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-oprab 7394
This theorem is referenced by:  brredunds  38624
  Copyright terms: Public domain W3C validator