Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opthg | Structured version Visualization version GIF version |
Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opthg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4804 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
2 | 1 | eqeq1d 2740 | . . 3 ⊢ (𝑥 = 𝐴 → (〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉)) |
3 | eqeq1 2742 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
4 | 3 | anbi1d 630 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷))) |
5 | 2, 4 | bibi12d 346 | . 2 ⊢ (𝑥 = 𝐴 → ((〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷)))) |
6 | opeq2 4805 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
7 | 6 | eqeq1d 2740 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉)) |
8 | eqeq1 2742 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐷 ↔ 𝐵 = 𝐷)) | |
9 | 8 | anbi2d 629 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
10 | 7, 9 | bibi12d 346 | . 2 ⊢ (𝑦 = 𝐵 → ((〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
11 | vex 3436 | . . 3 ⊢ 𝑥 ∈ V | |
12 | vex 3436 | . . 3 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | opth 5391 | . 2 ⊢ (〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) |
14 | 5, 10, 13 | vtocl2g 3510 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: opth1g 5393 opthg2 5394 opthneg 5396 otthg 5400 oteqex 5414 s111 14320 embedsetcestrclem 17874 symg2bas 19000 frgpnabllem1 19474 frgpnabllem2 19475 mat1dimbas 21621 linds2eq 31575 goeleq12bg 33311 opideq 36478 dvheveccl 39126 hoidmv1le 44132 oppr 44524 opprb 44525 fsetsnf1 44546 prproropf1olem4 44958 |
Copyright terms: Public domain | W3C validator |