MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthg Structured version   Visualization version   GIF version

Theorem opthg 5394
Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4809 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21eqeq1d 2741 . . 3 (𝑥 = 𝐴 → (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩))
3 eqeq1 2743 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
43anbi1d 629 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝑦 = 𝐷)))
52, 4bibi12d 345 . 2 (𝑥 = 𝐴 → ((⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷))))
6 opeq2 4810 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
76eqeq1d 2741 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩))
8 eqeq1 2743 . . . 4 (𝑦 = 𝐵 → (𝑦 = 𝐷𝐵 = 𝐷))
98anbi2d 628 . . 3 (𝑦 = 𝐵 → ((𝐴 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
107, 9bibi12d 345 . 2 (𝑦 = 𝐵 → ((⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))))
11 vex 3434 . . 3 𝑥 ∈ V
12 vex 3434 . . 3 𝑦 ∈ V
1311, 12opth 5393 . 2 (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷))
145, 10, 13vtocl2g 3508 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  cop 4572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573
This theorem is referenced by:  opth1g  5395  opthg2  5396  opthneg  5398  otthg  5402  oteqex  5416  s111  14301  embedsetcestrclem  17855  symg2bas  18981  frgpnabllem1  19455  frgpnabllem2  19456  mat1dimbas  21602  linds2eq  31554  goeleq12bg  33290  opideq  36457  dvheveccl  39105  hoidmv1le  44086  oppr  44475  opprb  44476  fsetsnf1  44497  prproropf1olem4  44910
  Copyright terms: Public domain W3C validator