| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthg | Structured version Visualization version GIF version | ||
| Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opthg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4833 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | eqeq1d 2731 | . . 3 ⊢ (𝑥 = 𝐴 → (〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉)) |
| 3 | eqeq1 2733 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
| 4 | 3 | anbi1d 631 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷))) |
| 5 | 2, 4 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷)))) |
| 6 | opeq2 4834 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 7 | 6 | eqeq1d 2731 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉)) |
| 8 | eqeq1 2733 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐷 ↔ 𝐵 = 𝐷)) | |
| 9 | 8 | anbi2d 630 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 10 | 7, 9 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝐵 → ((〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
| 11 | vex 3448 | . . 3 ⊢ 𝑥 ∈ V | |
| 12 | vex 3448 | . . 3 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | opth 5431 | . 2 ⊢ (〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) |
| 14 | 5, 10, 13 | vtocl2g 3537 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 |
| This theorem is referenced by: opth1g 5433 opthg2 5434 opthneg 5436 otthg 5440 oteqex 5455 s111 14556 embedsetcestrclem 18094 symg2bas 19299 frgpnabllem1 19779 frgpnabllem2 19780 mat1dimbas 22335 linds2eq 33325 goeleq12bg 35309 opideq 38298 dvheveccl 41079 hoidmv1le 46565 oppr 47004 opprb 47005 fsetsnf1 47026 prproropf1olem4 47480 fuco2 49285 |
| Copyright terms: Public domain | W3C validator |