MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opthg Structured version   Visualization version   GIF version

Theorem opthg 5432
Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem opthg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4833 . . . 4 (𝑥 = 𝐴 → ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝑦⟩)
21eqeq1d 2731 . . 3 (𝑥 = 𝐴 → (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩))
3 eqeq1 2733 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐶𝐴 = 𝐶))
43anbi1d 631 . . 3 (𝑥 = 𝐴 → ((𝑥 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝑦 = 𝐷)))
52, 4bibi12d 345 . 2 (𝑥 = 𝐴 → ((⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷))))
6 opeq2 4834 . . . 4 (𝑦 = 𝐵 → ⟨𝐴, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
76eqeq1d 2731 . . 3 (𝑦 = 𝐵 → (⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩))
8 eqeq1 2733 . . . 4 (𝑦 = 𝐵 → (𝑦 = 𝐷𝐵 = 𝐷))
98anbi2d 630 . . 3 (𝑦 = 𝐵 → ((𝐴 = 𝐶𝑦 = 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
107, 9bibi12d 345 . 2 (𝑦 = 𝐵 → ((⟨𝐴, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝑦 = 𝐷)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷))))
11 vex 3448 . . 3 𝑥 ∈ V
12 vex 3448 . . 3 𝑦 ∈ V
1311, 12opth 5431 . 2 (⟨𝑥, 𝑦⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑥 = 𝐶𝑦 = 𝐷))
145, 10, 13vtocl2g 3537 1 ((𝐴𝑉𝐵𝑊) → (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592
This theorem is referenced by:  opth1g  5433  opthg2  5434  opthneg  5436  otthg  5440  oteqex  5455  s111  14556  embedsetcestrclem  18094  symg2bas  19299  frgpnabllem1  19779  frgpnabllem2  19780  mat1dimbas  22335  linds2eq  33325  goeleq12bg  35309  opideq  38298  dvheveccl  41079  hoidmv1le  46565  oppr  47004  opprb  47005  fsetsnf1  47026  prproropf1olem4  47480  fuco2  49285
  Copyright terms: Public domain W3C validator