| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opthg | Structured version Visualization version GIF version | ||
| Description: Ordered pair theorem. 𝐶 and 𝐷 are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| opthg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeq1 4822 | . . . 4 ⊢ (𝑥 = 𝐴 → 〈𝑥, 𝑦〉 = 〈𝐴, 𝑦〉) | |
| 2 | 1 | eqeq1d 2733 | . . 3 ⊢ (𝑥 = 𝐴 → (〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉)) |
| 3 | eqeq1 2735 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐶 ↔ 𝐴 = 𝐶)) | |
| 4 | 3 | anbi1d 631 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷))) |
| 5 | 2, 4 | bibi12d 345 | . 2 ⊢ (𝑥 = 𝐴 → ((〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷)))) |
| 6 | opeq2 4823 | . . . 4 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 7 | 6 | eqeq1d 2733 | . . 3 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉)) |
| 8 | eqeq1 2735 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝑦 = 𝐷 ↔ 𝐵 = 𝐷)) | |
| 9 | 8 | anbi2d 630 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 = 𝐶 ∧ 𝑦 = 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 10 | 7, 9 | bibi12d 345 | . 2 ⊢ (𝑦 = 𝐵 → ((〈𝐴, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝑦 = 𝐷)) ↔ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)))) |
| 11 | vex 3440 | . . 3 ⊢ 𝑥 ∈ V | |
| 12 | vex 3440 | . . 3 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | opth 5414 | . 2 ⊢ (〈𝑥, 𝑦〉 = 〈𝐶, 𝐷〉 ↔ (𝑥 = 𝐶 ∧ 𝑦 = 𝐷)) |
| 14 | 5, 10, 13 | vtocl2g 3525 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 |
| This theorem is referenced by: opth1g 5416 opthg2 5417 opthneg 5419 otthg 5423 oteqex 5438 s111 14523 embedsetcestrclem 18063 symg2bas 19305 frgpnabllem1 19785 frgpnabllem2 19786 mat1dimbas 22387 linds2eq 33346 goeleq12bg 35393 opideq 38385 dvheveccl 41221 hoidmv1le 46702 oppr 47140 opprb 47141 fsetsnf1 47162 prproropf1olem4 47616 fuco2 49434 |
| Copyright terms: Public domain | W3C validator |