Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprc2 | Structured version Visualization version GIF version |
Description: Expansion of an ordered pair when the second member is a proper class. See also opprc 4824. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opprc2 | ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
2 | opprc 4824 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
3 | 1, 2 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-nul 4254 df-if 4457 df-op 4565 |
This theorem is referenced by: snopeqop 5414 dmsnopss 6106 strle1 16787 |
Copyright terms: Public domain | W3C validator |