MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprc2 Structured version   Visualization version   GIF version

Theorem opprc2 4903
Description: Expansion of an ordered pair when the second member is a proper class. See also opprc 4901. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc2 𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc2
StepHypRef Expression
1 simpr 484 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
2 opprc 4901 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
31, 2nsyl5 159 1 𝐵 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  cop 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-dif 3966  df-ss 3980  df-nul 4340  df-if 4532  df-op 4638
This theorem is referenced by:  snopeqop  5516  dmsnopss  6236  strle1  17192
  Copyright terms: Public domain W3C validator