Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opprc2 | Structured version Visualization version GIF version |
Description: Expansion of an ordered pair when the second member is a proper class. See also opprc 4837. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opprc2 | ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐵 ∈ V) | |
2 | opprc 4837 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
3 | 1, 2 | nsyl5 159 | 1 ⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 ∅c0 4266 〈cop 4576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3442 df-dif 3899 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-op 4577 |
This theorem is referenced by: snopeqop 5438 dmsnopss 6139 strle1 16933 |
Copyright terms: Public domain | W3C validator |