![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oprcl | Structured version Visualization version GIF version |
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
oprcl | ⊢ (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4326 | . 2 ⊢ (𝐶 ∈ ⟨𝐴, 𝐵⟩ → ¬ ⟨𝐴, 𝐵⟩ = ∅) | |
2 | opprc 4889 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (𝐶 ∈ ⟨𝐴, 𝐵⟩ → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4315 ⟨cop 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-dif 3944 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-op 4628 |
This theorem is referenced by: opth1 5466 opth 5467 0nelop 5487 |
Copyright terms: Public domain | W3C validator |