| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strle1 | Structured version Visualization version GIF version | ||
| Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strle1.i | ⊢ 𝐼 ∈ ℕ |
| strle1.a | ⊢ 𝐴 = 𝐼 |
| Ref | Expression |
|---|---|
| strle1 | ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strle1.i | . . 3 ⊢ 𝐼 ∈ ℕ | |
| 2 | 1 | nnrei 12155 | . . . 4 ⊢ 𝐼 ∈ ℝ |
| 3 | 2 | leidi 11672 | . . 3 ⊢ 𝐼 ≤ 𝐼 |
| 4 | 1, 1, 3 | 3pm3.2i 1340 | . 2 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
| 5 | difss 4089 | . . . 4 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
| 6 | strle1.a | . . . . . 6 ⊢ 𝐴 = 𝐼 | |
| 7 | 6, 1 | eqeltri 2824 | . . . . 5 ⊢ 𝐴 ∈ ℕ |
| 8 | funsng 6537 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ V) → Fun {〈𝐴, 𝑋〉}) | |
| 9 | 7, 8 | mpan 690 | . . . 4 ⊢ (𝑋 ∈ V → Fun {〈𝐴, 𝑋〉}) |
| 10 | funss 6505 | . . . 4 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
| 11 | 5, 9, 10 | mpsyl 68 | . . 3 ⊢ (𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
| 12 | fun0 6551 | . . . 4 ⊢ Fun ∅ | |
| 13 | opprc2 4852 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ V → 〈𝐴, 𝑋〉 = ∅) | |
| 14 | 13 | sneqd 4591 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V → {〈𝐴, 𝑋〉} = {∅}) |
| 15 | 14 | difeq1d 4078 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ({∅} ∖ {∅})) |
| 16 | difid 4329 | . . . . . 6 ⊢ ({∅} ∖ {∅}) = ∅ | |
| 17 | 15, 16 | eqtrdi 2780 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ∅) |
| 18 | 17 | funeqd 6508 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ↔ Fun ∅)) |
| 19 | 12, 18 | mpbiri 258 | . . 3 ⊢ (¬ 𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
| 20 | 11, 19 | pm2.61i 182 | . 2 ⊢ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) |
| 21 | dmsnopss 6167 | . . 3 ⊢ dom {〈𝐴, 𝑋〉} ⊆ {𝐴} | |
| 22 | 6 | sneqi 4590 | . . . 4 ⊢ {𝐴} = {𝐼} |
| 23 | 1 | nnzi 12517 | . . . . 5 ⊢ 𝐼 ∈ ℤ |
| 24 | fzsn 13487 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
| 25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ (𝐼...𝐼) = {𝐼} |
| 26 | 22, 25 | eqtr4i 2755 | . . 3 ⊢ {𝐴} = (𝐼...𝐼) |
| 27 | 21, 26 | sseqtri 3986 | . 2 ⊢ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼) |
| 28 | isstruct 17081 | . 2 ⊢ ({〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 ↔ ((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) | |
| 29 | 4, 20, 27, 28 | mpbir3an 1342 | 1 ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∖ cdif 3902 ⊆ wss 3905 ∅c0 4286 {csn 4579 〈cop 4585 class class class wbr 5095 dom cdm 5623 Fun wfun 6480 (class class class)co 7353 ≤ cle 11169 ℕcn 12146 ℤcz 12489 ...cfz 13428 Struct cstr 17075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-struct 17076 |
| This theorem is referenced by: strle2 17088 strle3 17089 1strstr 17152 srngstr 17231 lmodstr 17247 phlstr 17268 cnfldstr 21281 cnfldstrOLD 21296 |
| Copyright terms: Public domain | W3C validator |