| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strle1 | Structured version Visualization version GIF version | ||
| Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strle1.i | ⊢ 𝐼 ∈ ℕ |
| strle1.a | ⊢ 𝐴 = 𝐼 |
| Ref | Expression |
|---|---|
| strle1 | ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strle1.i | . . 3 ⊢ 𝐼 ∈ ℕ | |
| 2 | 1 | nnrei 12202 | . . . 4 ⊢ 𝐼 ∈ ℝ |
| 3 | 2 | leidi 11719 | . . 3 ⊢ 𝐼 ≤ 𝐼 |
| 4 | 1, 1, 3 | 3pm3.2i 1340 | . 2 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
| 5 | difss 4102 | . . . 4 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
| 6 | strle1.a | . . . . . 6 ⊢ 𝐴 = 𝐼 | |
| 7 | 6, 1 | eqeltri 2825 | . . . . 5 ⊢ 𝐴 ∈ ℕ |
| 8 | funsng 6570 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ V) → Fun {〈𝐴, 𝑋〉}) | |
| 9 | 7, 8 | mpan 690 | . . . 4 ⊢ (𝑋 ∈ V → Fun {〈𝐴, 𝑋〉}) |
| 10 | funss 6538 | . . . 4 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
| 11 | 5, 9, 10 | mpsyl 68 | . . 3 ⊢ (𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
| 12 | fun0 6584 | . . . 4 ⊢ Fun ∅ | |
| 13 | opprc2 4865 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ V → 〈𝐴, 𝑋〉 = ∅) | |
| 14 | 13 | sneqd 4604 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V → {〈𝐴, 𝑋〉} = {∅}) |
| 15 | 14 | difeq1d 4091 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ({∅} ∖ {∅})) |
| 16 | difid 4342 | . . . . . 6 ⊢ ({∅} ∖ {∅}) = ∅ | |
| 17 | 15, 16 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ∅) |
| 18 | 17 | funeqd 6541 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ↔ Fun ∅)) |
| 19 | 12, 18 | mpbiri 258 | . . 3 ⊢ (¬ 𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
| 20 | 11, 19 | pm2.61i 182 | . 2 ⊢ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) |
| 21 | dmsnopss 6190 | . . 3 ⊢ dom {〈𝐴, 𝑋〉} ⊆ {𝐴} | |
| 22 | 6 | sneqi 4603 | . . . 4 ⊢ {𝐴} = {𝐼} |
| 23 | 1 | nnzi 12564 | . . . . 5 ⊢ 𝐼 ∈ ℤ |
| 24 | fzsn 13534 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
| 25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ (𝐼...𝐼) = {𝐼} |
| 26 | 22, 25 | eqtr4i 2756 | . . 3 ⊢ {𝐴} = (𝐼...𝐼) |
| 27 | 21, 26 | sseqtri 3998 | . 2 ⊢ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼) |
| 28 | isstruct 17129 | . 2 ⊢ ({〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 ↔ ((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) | |
| 29 | 4, 20, 27, 28 | mpbir3an 1342 | 1 ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 {csn 4592 〈cop 4598 class class class wbr 5110 dom cdm 5641 Fun wfun 6508 (class class class)co 7390 ≤ cle 11216 ℕcn 12193 ℤcz 12536 ...cfz 13475 Struct cstr 17123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 |
| This theorem is referenced by: strle2 17136 strle3 17137 1strstr 17200 srngstr 17279 lmodstr 17295 phlstr 17316 cnfldstr 21273 cnfldstrOLD 21288 |
| Copyright terms: Public domain | W3C validator |