![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strle1 | Structured version Visualization version GIF version |
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
Ref | Expression |
---|---|
strle1 | ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strle1.i | . . 3 ⊢ 𝐼 ∈ ℕ | |
2 | 1 | nnrei 12273 | . . . 4 ⊢ 𝐼 ∈ ℝ |
3 | 2 | leidi 11795 | . . 3 ⊢ 𝐼 ≤ 𝐼 |
4 | 1, 1, 3 | 3pm3.2i 1338 | . 2 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
5 | difss 4146 | . . . 4 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
6 | strle1.a | . . . . . 6 ⊢ 𝐴 = 𝐼 | |
7 | 6, 1 | eqeltri 2835 | . . . . 5 ⊢ 𝐴 ∈ ℕ |
8 | funsng 6619 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ V) → Fun {〈𝐴, 𝑋〉}) | |
9 | 7, 8 | mpan 690 | . . . 4 ⊢ (𝑋 ∈ V → Fun {〈𝐴, 𝑋〉}) |
10 | funss 6587 | . . . 4 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
11 | 5, 9, 10 | mpsyl 68 | . . 3 ⊢ (𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
12 | fun0 6633 | . . . 4 ⊢ Fun ∅ | |
13 | opprc2 4903 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ V → 〈𝐴, 𝑋〉 = ∅) | |
14 | 13 | sneqd 4643 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V → {〈𝐴, 𝑋〉} = {∅}) |
15 | 14 | difeq1d 4135 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ({∅} ∖ {∅})) |
16 | difid 4382 | . . . . . 6 ⊢ ({∅} ∖ {∅}) = ∅ | |
17 | 15, 16 | eqtrdi 2791 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ∅) |
18 | 17 | funeqd 6590 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ↔ Fun ∅)) |
19 | 12, 18 | mpbiri 258 | . . 3 ⊢ (¬ 𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
20 | 11, 19 | pm2.61i 182 | . 2 ⊢ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) |
21 | dmsnopss 6236 | . . 3 ⊢ dom {〈𝐴, 𝑋〉} ⊆ {𝐴} | |
22 | 6 | sneqi 4642 | . . . 4 ⊢ {𝐴} = {𝐼} |
23 | 1 | nnzi 12639 | . . . . 5 ⊢ 𝐼 ∈ ℤ |
24 | fzsn 13603 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ (𝐼...𝐼) = {𝐼} |
26 | 22, 25 | eqtr4i 2766 | . . 3 ⊢ {𝐴} = (𝐼...𝐼) |
27 | 21, 26 | sseqtri 4032 | . 2 ⊢ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼) |
28 | isstruct 17186 | . 2 ⊢ ({〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 ↔ ((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) | |
29 | 4, 20, 27, 28 | mpbir3an 1340 | 1 ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 {csn 4631 〈cop 4637 class class class wbr 5148 dom cdm 5689 Fun wfun 6557 (class class class)co 7431 ≤ cle 11294 ℕcn 12264 ℤcz 12611 ...cfz 13544 Struct cstr 17180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 |
This theorem is referenced by: strle2 17193 strle3 17194 1strstr 17260 1strstr1 17261 srngstr 17355 lmodstr 17371 phlstr 17392 cnfldstr 21384 cnfldstrOLD 21399 |
Copyright terms: Public domain | W3C validator |