![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strle1 | Structured version Visualization version GIF version |
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
Ref | Expression |
---|---|
strle1 | ⊢ {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strle1.i | . . 3 ⊢ 𝐼 ∈ ℕ | |
2 | 1 | nnrei 12220 | . . . 4 ⊢ 𝐼 ∈ ℝ |
3 | 2 | leidi 11747 | . . 3 ⊢ 𝐼 ≤ 𝐼 |
4 | 1, 1, 3 | 3pm3.2i 1339 | . 2 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
5 | difss 4131 | . . . 4 ⊢ ({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} | |
6 | strle1.a | . . . . . 6 ⊢ 𝐴 = 𝐼 | |
7 | 6, 1 | eqeltri 2829 | . . . . 5 ⊢ 𝐴 ∈ ℕ |
8 | funsng 6599 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ V) → Fun {⟨𝐴, 𝑋⟩}) | |
9 | 7, 8 | mpan 688 | . . . 4 ⊢ (𝑋 ∈ V → Fun {⟨𝐴, 𝑋⟩}) |
10 | funss 6567 | . . . 4 ⊢ (({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} → (Fun {⟨𝐴, 𝑋⟩} → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}))) | |
11 | 5, 9, 10 | mpsyl 68 | . . 3 ⊢ (𝑋 ∈ V → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})) |
12 | fun0 6613 | . . . 4 ⊢ Fun ∅ | |
13 | opprc2 4898 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ V → ⟨𝐴, 𝑋⟩ = ∅) | |
14 | 13 | sneqd 4640 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V → {⟨𝐴, 𝑋⟩} = {∅}) |
15 | 14 | difeq1d 4121 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → ({⟨𝐴, 𝑋⟩} ∖ {∅}) = ({∅} ∖ {∅})) |
16 | difid 4370 | . . . . . 6 ⊢ ({∅} ∖ {∅}) = ∅ | |
17 | 15, 16 | eqtrdi 2788 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → ({⟨𝐴, 𝑋⟩} ∖ {∅}) = ∅) |
18 | 17 | funeqd 6570 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ↔ Fun ∅)) |
19 | 12, 18 | mpbiri 257 | . . 3 ⊢ (¬ 𝑋 ∈ V → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})) |
20 | 11, 19 | pm2.61i 182 | . 2 ⊢ Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) |
21 | dmsnopss 6213 | . . 3 ⊢ dom {⟨𝐴, 𝑋⟩} ⊆ {𝐴} | |
22 | 6 | sneqi 4639 | . . . 4 ⊢ {𝐴} = {𝐼} |
23 | 1 | nnzi 12585 | . . . . 5 ⊢ 𝐼 ∈ ℤ |
24 | fzsn 13542 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ (𝐼...𝐼) = {𝐼} |
26 | 22, 25 | eqtr4i 2763 | . . 3 ⊢ {𝐴} = (𝐼...𝐼) |
27 | 21, 26 | sseqtri 4018 | . 2 ⊢ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼) |
28 | isstruct 17084 | . 2 ⊢ ({⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ ↔ ((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ∧ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))) | |
29 | 4, 20, 27, 28 | mpbir3an 1341 | 1 ⊢ {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 {csn 4628 ⟨cop 4634 class class class wbr 5148 dom cdm 5676 Fun wfun 6537 (class class class)co 7408 ≤ cle 11248 ℕcn 12211 ℤcz 12557 ...cfz 13483 Struct cstr 17078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 |
This theorem is referenced by: strle2 17091 strle3 17092 1strstr 17158 1strstr1 17159 srngstr 17253 lmodstr 17269 phlstr 17290 cnfldstr 20945 |
Copyright terms: Public domain | W3C validator |