![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strle1 | Structured version Visualization version GIF version |
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
Ref | Expression |
---|---|
strle1 | ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strle1.i | . . 3 ⊢ 𝐼 ∈ ℕ | |
2 | 1 | nnrei 12254 | . . . 4 ⊢ 𝐼 ∈ ℝ |
3 | 2 | leidi 11780 | . . 3 ⊢ 𝐼 ≤ 𝐼 |
4 | 1, 1, 3 | 3pm3.2i 1336 | . 2 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
5 | difss 4128 | . . . 4 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
6 | strle1.a | . . . . . 6 ⊢ 𝐴 = 𝐼 | |
7 | 6, 1 | eqeltri 2821 | . . . . 5 ⊢ 𝐴 ∈ ℕ |
8 | funsng 6605 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ V) → Fun {〈𝐴, 𝑋〉}) | |
9 | 7, 8 | mpan 688 | . . . 4 ⊢ (𝑋 ∈ V → Fun {〈𝐴, 𝑋〉}) |
10 | funss 6573 | . . . 4 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
11 | 5, 9, 10 | mpsyl 68 | . . 3 ⊢ (𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
12 | fun0 6619 | . . . 4 ⊢ Fun ∅ | |
13 | opprc2 4900 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ V → 〈𝐴, 𝑋〉 = ∅) | |
14 | 13 | sneqd 4642 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V → {〈𝐴, 𝑋〉} = {∅}) |
15 | 14 | difeq1d 4117 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ({∅} ∖ {∅})) |
16 | difid 4372 | . . . . . 6 ⊢ ({∅} ∖ {∅}) = ∅ | |
17 | 15, 16 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ∅) |
18 | 17 | funeqd 6576 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ↔ Fun ∅)) |
19 | 12, 18 | mpbiri 257 | . . 3 ⊢ (¬ 𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
20 | 11, 19 | pm2.61i 182 | . 2 ⊢ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) |
21 | dmsnopss 6220 | . . 3 ⊢ dom {〈𝐴, 𝑋〉} ⊆ {𝐴} | |
22 | 6 | sneqi 4641 | . . . 4 ⊢ {𝐴} = {𝐼} |
23 | 1 | nnzi 12619 | . . . . 5 ⊢ 𝐼 ∈ ℤ |
24 | fzsn 13578 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ (𝐼...𝐼) = {𝐼} |
26 | 22, 25 | eqtr4i 2756 | . . 3 ⊢ {𝐴} = (𝐼...𝐼) |
27 | 21, 26 | sseqtri 4013 | . 2 ⊢ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼) |
28 | isstruct 17124 | . 2 ⊢ ({〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 ↔ ((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) | |
29 | 4, 20, 27, 28 | mpbir3an 1338 | 1 ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∖ cdif 3941 ⊆ wss 3944 ∅c0 4322 {csn 4630 〈cop 4636 class class class wbr 5149 dom cdm 5678 Fun wfun 6543 (class class class)co 7419 ≤ cle 11281 ℕcn 12245 ℤcz 12591 ...cfz 13519 Struct cstr 17118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-struct 17119 |
This theorem is referenced by: strle2 17131 strle3 17132 1strstr 17198 1strstr1 17199 srngstr 17293 lmodstr 17309 phlstr 17330 cnfldstr 21298 cnfldstrOLD 21313 |
Copyright terms: Public domain | W3C validator |