![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strle1 | Structured version Visualization version GIF version |
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
Ref | Expression |
---|---|
strle1 | ⊢ {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strle1.i | . . 3 ⊢ 𝐼 ∈ ℕ | |
2 | 1 | nnrei 12252 | . . . 4 ⊢ 𝐼 ∈ ℝ |
3 | 2 | leidi 11779 | . . 3 ⊢ 𝐼 ≤ 𝐼 |
4 | 1, 1, 3 | 3pm3.2i 1337 | . 2 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
5 | difss 4130 | . . . 4 ⊢ ({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} | |
6 | strle1.a | . . . . . 6 ⊢ 𝐴 = 𝐼 | |
7 | 6, 1 | eqeltri 2825 | . . . . 5 ⊢ 𝐴 ∈ ℕ |
8 | funsng 6604 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ V) → Fun {⟨𝐴, 𝑋⟩}) | |
9 | 7, 8 | mpan 689 | . . . 4 ⊢ (𝑋 ∈ V → Fun {⟨𝐴, 𝑋⟩}) |
10 | funss 6572 | . . . 4 ⊢ (({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} → (Fun {⟨𝐴, 𝑋⟩} → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}))) | |
11 | 5, 9, 10 | mpsyl 68 | . . 3 ⊢ (𝑋 ∈ V → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})) |
12 | fun0 6618 | . . . 4 ⊢ Fun ∅ | |
13 | opprc2 4899 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ V → ⟨𝐴, 𝑋⟩ = ∅) | |
14 | 13 | sneqd 4641 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V → {⟨𝐴, 𝑋⟩} = {∅}) |
15 | 14 | difeq1d 4119 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → ({⟨𝐴, 𝑋⟩} ∖ {∅}) = ({∅} ∖ {∅})) |
16 | difid 4371 | . . . . . 6 ⊢ ({∅} ∖ {∅}) = ∅ | |
17 | 15, 16 | eqtrdi 2784 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → ({⟨𝐴, 𝑋⟩} ∖ {∅}) = ∅) |
18 | 17 | funeqd 6575 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ↔ Fun ∅)) |
19 | 12, 18 | mpbiri 258 | . . 3 ⊢ (¬ 𝑋 ∈ V → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})) |
20 | 11, 19 | pm2.61i 182 | . 2 ⊢ Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) |
21 | dmsnopss 6218 | . . 3 ⊢ dom {⟨𝐴, 𝑋⟩} ⊆ {𝐴} | |
22 | 6 | sneqi 4640 | . . . 4 ⊢ {𝐴} = {𝐼} |
23 | 1 | nnzi 12617 | . . . . 5 ⊢ 𝐼 ∈ ℤ |
24 | fzsn 13576 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ (𝐼...𝐼) = {𝐼} |
26 | 22, 25 | eqtr4i 2759 | . . 3 ⊢ {𝐴} = (𝐼...𝐼) |
27 | 21, 26 | sseqtri 4016 | . 2 ⊢ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼) |
28 | isstruct 17121 | . 2 ⊢ ({⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ ↔ ((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ∧ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))) | |
29 | 4, 20, 27, 28 | mpbir3an 1339 | 1 ⊢ {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∖ cdif 3944 ⊆ wss 3947 ∅c0 4323 {csn 4629 ⟨cop 4635 class class class wbr 5148 dom cdm 5678 Fun wfun 6542 (class class class)co 7420 ≤ cle 11280 ℕcn 12243 ℤcz 12589 ...cfz 13517 Struct cstr 17115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-struct 17116 |
This theorem is referenced by: strle2 17128 strle3 17129 1strstr 17195 1strstr1 17196 srngstr 17290 lmodstr 17306 phlstr 17327 cnfldstr 21281 cnfldstrOLD 21296 |
Copyright terms: Public domain | W3C validator |