| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > strle1 | Structured version Visualization version GIF version | ||
| Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
| Ref | Expression |
|---|---|
| strle1.i | ⊢ 𝐼 ∈ ℕ |
| strle1.a | ⊢ 𝐴 = 𝐼 |
| Ref | Expression |
|---|---|
| strle1 | ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strle1.i | . . 3 ⊢ 𝐼 ∈ ℕ | |
| 2 | 1 | nnrei 12254 | . . . 4 ⊢ 𝐼 ∈ ℝ |
| 3 | 2 | leidi 11776 | . . 3 ⊢ 𝐼 ≤ 𝐼 |
| 4 | 1, 1, 3 | 3pm3.2i 1340 | . 2 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
| 5 | difss 4116 | . . . 4 ⊢ ({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} | |
| 6 | strle1.a | . . . . . 6 ⊢ 𝐴 = 𝐼 | |
| 7 | 6, 1 | eqeltri 2831 | . . . . 5 ⊢ 𝐴 ∈ ℕ |
| 8 | funsng 6592 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ V) → Fun {〈𝐴, 𝑋〉}) | |
| 9 | 7, 8 | mpan 690 | . . . 4 ⊢ (𝑋 ∈ V → Fun {〈𝐴, 𝑋〉}) |
| 10 | funss 6560 | . . . 4 ⊢ (({〈𝐴, 𝑋〉} ∖ {∅}) ⊆ {〈𝐴, 𝑋〉} → (Fun {〈𝐴, 𝑋〉} → Fun ({〈𝐴, 𝑋〉} ∖ {∅}))) | |
| 11 | 5, 9, 10 | mpsyl 68 | . . 3 ⊢ (𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
| 12 | fun0 6606 | . . . 4 ⊢ Fun ∅ | |
| 13 | opprc2 4879 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ V → 〈𝐴, 𝑋〉 = ∅) | |
| 14 | 13 | sneqd 4618 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V → {〈𝐴, 𝑋〉} = {∅}) |
| 15 | 14 | difeq1d 4105 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ({∅} ∖ {∅})) |
| 16 | difid 4356 | . . . . . 6 ⊢ ({∅} ∖ {∅}) = ∅ | |
| 17 | 15, 16 | eqtrdi 2787 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → ({〈𝐴, 𝑋〉} ∖ {∅}) = ∅) |
| 18 | 17 | funeqd 6563 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ↔ Fun ∅)) |
| 19 | 12, 18 | mpbiri 258 | . . 3 ⊢ (¬ 𝑋 ∈ V → Fun ({〈𝐴, 𝑋〉} ∖ {∅})) |
| 20 | 11, 19 | pm2.61i 182 | . 2 ⊢ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) |
| 21 | dmsnopss 6208 | . . 3 ⊢ dom {〈𝐴, 𝑋〉} ⊆ {𝐴} | |
| 22 | 6 | sneqi 4617 | . . . 4 ⊢ {𝐴} = {𝐼} |
| 23 | 1 | nnzi 12621 | . . . . 5 ⊢ 𝐼 ∈ ℤ |
| 24 | fzsn 13588 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
| 25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ (𝐼...𝐼) = {𝐼} |
| 26 | 22, 25 | eqtr4i 2762 | . . 3 ⊢ {𝐴} = (𝐼...𝐼) |
| 27 | 21, 26 | sseqtri 4012 | . 2 ⊢ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼) |
| 28 | isstruct 17176 | . 2 ⊢ ({〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 ↔ ((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ Fun ({〈𝐴, 𝑋〉} ∖ {∅}) ∧ dom {〈𝐴, 𝑋〉} ⊆ (𝐼...𝐼))) | |
| 29 | 4, 20, 27, 28 | mpbir3an 1342 | 1 ⊢ {〈𝐴, 𝑋〉} Struct 〈𝐼, 𝐼〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 {csn 4606 〈cop 4612 class class class wbr 5124 dom cdm 5659 Fun wfun 6530 (class class class)co 7410 ≤ cle 11275 ℕcn 12245 ℤcz 12593 ...cfz 13529 Struct cstr 17170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 |
| This theorem is referenced by: strle2 17183 strle3 17184 1strstr 17247 1strstr1 17248 srngstr 17328 lmodstr 17344 phlstr 17365 cnfldstr 21322 cnfldstrOLD 21337 |
| Copyright terms: Public domain | W3C validator |