![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > strle1 | Structured version Visualization version GIF version |
Description: Make a structure from a singleton. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
strle1.i | ⊢ 𝐼 ∈ ℕ |
strle1.a | ⊢ 𝐴 = 𝐼 |
Ref | Expression |
---|---|
strle1 | ⊢ {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strle1.i | . . 3 ⊢ 𝐼 ∈ ℕ | |
2 | 1 | nnrei 12170 | . . . 4 ⊢ 𝐼 ∈ ℝ |
3 | 2 | leidi 11697 | . . 3 ⊢ 𝐼 ≤ 𝐼 |
4 | 1, 1, 3 | 3pm3.2i 1340 | . 2 ⊢ (𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) |
5 | difss 4095 | . . . 4 ⊢ ({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} | |
6 | strle1.a | . . . . . 6 ⊢ 𝐴 = 𝐼 | |
7 | 6, 1 | eqeltri 2830 | . . . . 5 ⊢ 𝐴 ∈ ℕ |
8 | funsng 6556 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑋 ∈ V) → Fun {⟨𝐴, 𝑋⟩}) | |
9 | 7, 8 | mpan 689 | . . . 4 ⊢ (𝑋 ∈ V → Fun {⟨𝐴, 𝑋⟩}) |
10 | funss 6524 | . . . 4 ⊢ (({⟨𝐴, 𝑋⟩} ∖ {∅}) ⊆ {⟨𝐴, 𝑋⟩} → (Fun {⟨𝐴, 𝑋⟩} → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}))) | |
11 | 5, 9, 10 | mpsyl 68 | . . 3 ⊢ (𝑋 ∈ V → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})) |
12 | fun0 6570 | . . . 4 ⊢ Fun ∅ | |
13 | opprc2 4859 | . . . . . . . 8 ⊢ (¬ 𝑋 ∈ V → ⟨𝐴, 𝑋⟩ = ∅) | |
14 | 13 | sneqd 4602 | . . . . . . 7 ⊢ (¬ 𝑋 ∈ V → {⟨𝐴, 𝑋⟩} = {∅}) |
15 | 14 | difeq1d 4085 | . . . . . 6 ⊢ (¬ 𝑋 ∈ V → ({⟨𝐴, 𝑋⟩} ∖ {∅}) = ({∅} ∖ {∅})) |
16 | difid 4334 | . . . . . 6 ⊢ ({∅} ∖ {∅}) = ∅ | |
17 | 15, 16 | eqtrdi 2789 | . . . . 5 ⊢ (¬ 𝑋 ∈ V → ({⟨𝐴, 𝑋⟩} ∖ {∅}) = ∅) |
18 | 17 | funeqd 6527 | . . . 4 ⊢ (¬ 𝑋 ∈ V → (Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ↔ Fun ∅)) |
19 | 12, 18 | mpbiri 258 | . . 3 ⊢ (¬ 𝑋 ∈ V → Fun ({⟨𝐴, 𝑋⟩} ∖ {∅})) |
20 | 11, 19 | pm2.61i 182 | . 2 ⊢ Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) |
21 | dmsnopss 6170 | . . 3 ⊢ dom {⟨𝐴, 𝑋⟩} ⊆ {𝐴} | |
22 | 6 | sneqi 4601 | . . . 4 ⊢ {𝐴} = {𝐼} |
23 | 1 | nnzi 12535 | . . . . 5 ⊢ 𝐼 ∈ ℤ |
24 | fzsn 13492 | . . . . 5 ⊢ (𝐼 ∈ ℤ → (𝐼...𝐼) = {𝐼}) | |
25 | 23, 24 | ax-mp 5 | . . . 4 ⊢ (𝐼...𝐼) = {𝐼} |
26 | 22, 25 | eqtr4i 2764 | . . 3 ⊢ {𝐴} = (𝐼...𝐼) |
27 | 21, 26 | sseqtri 3984 | . 2 ⊢ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼) |
28 | isstruct 17032 | . 2 ⊢ ({⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ ↔ ((𝐼 ∈ ℕ ∧ 𝐼 ∈ ℕ ∧ 𝐼 ≤ 𝐼) ∧ Fun ({⟨𝐴, 𝑋⟩} ∖ {∅}) ∧ dom {⟨𝐴, 𝑋⟩} ⊆ (𝐼...𝐼))) | |
29 | 4, 20, 27, 28 | mpbir3an 1342 | 1 ⊢ {⟨𝐴, 𝑋⟩} Struct ⟨𝐼, 𝐼⟩ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4286 {csn 4590 ⟨cop 4596 class class class wbr 5109 dom cdm 5637 Fun wfun 6494 (class class class)co 7361 ≤ cle 11198 ℕcn 12161 ℤcz 12507 ...cfz 13433 Struct cstr 17026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-struct 17027 |
This theorem is referenced by: strle2 17039 strle3 17040 1strstr 17106 1strstr1 17107 srngstr 17198 lmodstr 17214 phlstr 17235 cnfldstr 20821 |
Copyright terms: Public domain | W3C validator |